Skip to main content
Log in

Analysis of Strain Rate Sensitivity of Ultrafine-Grained AA1050 by Stress Relaxation Test

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercially pure aluminum sheets, AA 1050, are processed by accumulative roll bonding (ARB) up to eight cycles to achieve ultrafine-grained (UFG) aluminum as primary material for mechanical testing. Optical microscopy and electron backscattering diffraction analysis are used for microstructural analysis of the processed sheets. Strain rate sensitivity (m-value) of the specimens is measured over a wide range of strain rates by stress relaxation test under plane strain compression. It is shown that the flow stress activation volume is reduced by decrease of the grain size. This reduction which follows a linear relation for UFG specimens, is thought to enhance the required effective (or thermal) component of flow stress. This results in increase of the m-value with the number of ARB cycles. Strain rate sensitivity is also obtained as a monotonic function of strain rate. The results show that this parameter increases monotonically by decrease of the strain rate, in particular for specimens processed by more ARB cycles. This increase is mainly linked to enhanced grain boundary sliding as a competing mechanism of deformation acting besides the common dislocation glide at low strain rate deformation of UFGed aluminum. Recovery of the internal (athermal) component of flow stress during the relaxation of these specimens seems also to cause further increase of the m-value by decrease of the strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Estrin, A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  2. A. Azushima, R. Kopp, A. Korhonen, D. Yang, F. Micari, G. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski: CIRP Ann. Manuf. Technol., 2008, vol. 57, pp. 716-735.

    Article  Google Scholar 

  3. S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono: Acta Mater., 2007, vol. 55, pp. 2885-2895.

    Article  Google Scholar 

  4. P.J. Hsieh, J.C. Huang, Y.P. Hung, S.I. Chou, J.S.C. Jang: Mater. Chem. Phys., 2004, vol. 88, pp. 364-376.

    Article  Google Scholar 

  5. V.M. Segal: Mat. Sci. Eng. A, 1995, vol. 197, pp. 157-164.

    Article  Google Scholar 

  6. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-583.

    Article  Google Scholar 

  7. R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A, 1991, vol. 197, pp. 35–40.

    Article  Google Scholar 

  8. H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens: Mater. Sci. Eng. A, 2008, vol. 497, pp. 132-138.

    Article  Google Scholar 

  9. H. Song, Y. Kim, W. Nam: Met. Mater. Int., 2006, vol. 12, pp. 7-12.

    Article  Google Scholar 

  10. X. Huang, N. Kamikawa, N. Hansen: J. Mater. Sci., 2008, vol. 43, pp. 7397-7402.

    Article  Google Scholar 

  11. M.S. Mohebbi, A. Akbarzadeh, Y.O. Yoon, S.K. Kim: Mater. Sci. Eng. A, 2014, vol. 593, pp. 136-144.

    Article  Google Scholar 

  12. P. Kumar, C. Xu, T.G. Langdon: J. Mater. Sci., 2009, vol. 44, pp. 3913–3916.

    Article  Google Scholar 

  13. W.F. Hosford and R.M. Caddell: Metal Forming (Mechanics and Metallurgy), Prentice Hall, 1993.

  14. Q. Wei: J. Mater. Sci., 2007, vol. 42, pp. 1709-1727.

    Article  Google Scholar 

  15. D. Lee, E.W. Hart: Metall. Trans., 1971, vol. 2, pp. 1245-1248.

    Article  Google Scholar 

  16. V.I. Dotsenko: Phys. Stat. Solids (b), 1979, vol. 93, pp. 11-43.

    Article  Google Scholar 

  17. I. Gupta, J.C.M. Li: Metall. Trans., 1970, vol., pp. 2323-2330.

  18. Y. Wang, A. Hamza, E. Ma: Acta mater., 2006, vol. 54, pp. 2715-2726.

    Article  Google Scholar 

  19. A.P. Green: Philos. Mag., 1951, vol. 42(7), pp. 900-918.

    Google Scholar 

  20. D.W.A. Rees: Mater. Des., 2012, vol. 39, pp. 495-503.

    Article  Google Scholar 

  21. G.E. Totten: Handbook of Aluminum, Physical Metallurgy & Processes, vol. 1, Lavoisier, Paris, 2003.

  22. C. Chovet, C. Desrayaud, F. Montheillet: Int. J. Mech. Sci., 2002, vol. 44, pp. 343-357.

    Article  Google Scholar 

  23. J.M. Alexander: J. Mech. Phys. Solids, 1955, vol. 3, pp. 233-245.

    Article  Google Scholar 

  24. A. Seeger, J. Diehl, S. Mader, H. Rebstock: Philos. Mag., 1957, vol. 2, pp. 323-350.

    Article  Google Scholar 

  25. D. Caillard and J.L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, Elsevier, Oxford, 2003.

  26. Z. Trojanova, K. Mathis, P. Lukac, G. Nemeth, F. Chmelík: Mater. Chem. Phys., 2011, vol. 130, pp. 1146-1150.

    Article  Google Scholar 

  27. H. Miyamoto, K. Ota, T. Mimaki: Scr. Mater., 2006, vol. 54, pp. 1721-1725.

    Article  Google Scholar 

  28. J. May, H. Hoppel, M. Goken: Scr. Mater., 2005, vol. 53, pp. 189-194.

    Article  Google Scholar 

  29. R. Hayes, D. Witkin, F. Zhou, E. Lavernia: Acta mater., 2004, vol. 52, pp. 4259-4271.

    Article  Google Scholar 

  30. P.L. Sun, E.K. Cerreta, G.T. Gray, J.F. Bingert: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2983-2994.

    Article  Google Scholar 

  31. Q. Wei, S. Cheng, K.T. Ramesh, E. Ma: Mater. Sci. Eng. A, 2004, vol. 381, pp. 71-79.

    Article  Google Scholar 

  32. P. Spatig, J. Bonneville, J.L. Martin: Mater. Sci. Eng. A, 1993, vol. 167, pp. 73-79.

    Article  Google Scholar 

  33. B. Kashyap, P. Hodgson, Y. Estrin, I. Timokhina, M. Barnett, I. Sabirov: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3294-3303.

    Article  Google Scholar 

  34. J. Martin, B. Lo Piccolo, T. Kruml, J. Bonneville: Mater. Sci. Eng. A, 2002, vol. 322, pp. 118-125.

    Article  Google Scholar 

  35. G. Davies, J. Edington, C. Cutler, K. Padmanabhan: J. Mater. Sci., 1970, vol. 5, pp. 1091-1102.

    Article  Google Scholar 

  36. J.W. Edington, K. Melton, C. Cutler: Prog. Mater. Sci., 1976, vol. 21, pp. 61-170.

    Article  Google Scholar 

  37. M. Wang, A. Shan: J. Alloys Comp., 2008, vol. 455, pp. L10-L14.

    Article  Google Scholar 

  38. H.W. Hoppel, J. May, M. Goken: Adv. Eng. Mater., 2004, vol. 6, pp. 781-784.

    Article  Google Scholar 

  39. Y.J. Li, X.H. Zeng, W. Blum: Acta Mater., 2004, vol. 52, pp. 5009-5018.

    Article  Google Scholar 

  40. J. Chen, L. Lu, K. Lu: Scr. Mater., 2006, vol. 54, pp. 1913-1918.

    Article  Google Scholar 

  41. L. Xiao, J. Bai: Mater. Sci. Eng. A, 1998, vol. 244, pp. 250-256.

    Article  Google Scholar 

  42. Y. Estrin, L.S. Toth, A. Molinari, Y. Brechet: Acta Mater., 1998, vol. 46, pp. 5509-5522.

    Article  Google Scholar 

  43. B. Ahn, R. Mitra, E.J. Lavernia, S.R. Nutt: J. Mater. Sci., 2010, vol. 45, pp. 4790-4795.

    Article  Google Scholar 

  44. H. Luthy, R.A. White, O.D. Sherby: Mater. Sci. Eng., 1979, vol. 39, pp. 211-216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Mohebbi.

Additional information

Manuscript submitted May 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, M.S., Akbarzadeh, A., Kim, B.H. et al. Analysis of Strain Rate Sensitivity of Ultrafine-Grained AA1050 by Stress Relaxation Test. Metall Mater Trans A 45, 5442–5450 (2014). https://doi.org/10.1007/s11661-014-2534-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2534-4

Keywords

Navigation