Skip to main content

Advertisement

Log in

Microstructure Development, Nanomechanical, and Dynamic Compression Properties of Spark Plasma Sintered TiB2-Ti-Based Homogeneous and Bi-layered Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (~36 GPa) and indentation fracture toughness (~12 MPa m1/2). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in α-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s−1. The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr–Coulomb theory is used to rationalize the measured strength properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Basu, K. Balani: Advanced structural ceramics, John Wiley & Sons Inc., USA, 2011.

    Book  Google Scholar 

  2. G. Subhash, S. Maiti, P.H. Geubelle, and D. Ghosh: J. Am. Ceram. Soc., 2008, vol. 91, pp. 2777.

    Article  Google Scholar 

  3. C.A. Tarry: United States, Patent No. 5443917, 22 Aug 1995.

  4. T.J. Holmquist, A.M. Rajendran, D.W. Templeton, and K.D. Bishnoi: “A Ceramic Armour Database,” TARDEC Technical Report, Jan 1999.

  5. K. S. Kumar, M. S. DiPietro: Scripta Metallurgica et Materialia, 1995, vol. 32(5), pp. 793-798.

    Article  Google Scholar 

  6. V. Madhu, K. Ramanjaneyulu, T. Balakrishna Bhat, N. K. Gupta: International Journal of Impact Engineering, 2005, vol. 32(1-4), pp. 337-350.

    Article  Google Scholar 

  7. B. Basu, G. B. Raju, A. K. Suri: International Materials Reviews, 2006, vol. 51(6), pp. 352-374.

    Article  Google Scholar 

  8. S. Baik, P. K. Becher: Journal of American Ceramic Society, 1987, vol. 70(8), pp. 527-530.

    Article  Google Scholar 

  9. T. S. R. Ch. Murthy, B. Basu, R. Balasubramaniam, A. K. Suri, C. Subramanian, R. K. Foteda: Journal of American Ceramic Society, 2006, vol 89(1), pp.131-138.

    Article  Google Scholar 

  10. W. Wang, Z. Fu, H. Wang, R. Yuan: Journal of European Ceramic Society, 2002, vol. 22, pp.1045-1049.

    Article  Google Scholar 

  11. M. K. Ferber, P. F. Becher, C. B. Finch: Journal of American Ceramic Society, 1983, vol. 66(1), pp.C2-C4.

    Article  Google Scholar 

  12. Z. H. Zhang, F. C. Wang, L. Wang, S. K. Li: Materials Science and Engineering A, 2008, vol. 476(1-2), pp.201-205.

    Article  Google Scholar 

  13. Z. H. Zhang, F. C. Wang, S. K. Lee, Y. Liu, J. W. Cheng, Y. Liang: Materials Science and Engineering A, 2009, vol. 523(1-2), pp. 134-138.

    Article  Google Scholar 

  14. G. D. Zhan, J. Kuntz, J. Wan, J. Garay, A. K. Mukherjee: Journal of American Ceramic Society, 2003, vol 86(1), pp. 200-202.

    Article  Google Scholar 

  15. B. Basu, J.H. Lee, and D.Y. Kim: J. Am. Ceram. Soc., 2004, vol. 87(9), pp. 1771–74.

    Article  Google Scholar 

  16. Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: Journal of Materials Science, 2006, vol. 41, pp. 763-777.

    Article  Google Scholar 

  17. T. Venkateswaran, B. Basu, G.B. Raju, and D.Y Kim: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 2431–40.

  18. D. V. Dudina, D. M. Hulbert, D. Jiang, C. Unuvar, S. J. Cytron, A. K. Mukherjee: Journal of Materials Science, 2008, vol. 43(10), pp. 3569-3576.

    Article  Google Scholar 

  19. B. Li, Y. Liu, H. Cao, L. He, J. Li: Journal of Materials Science, 2009, vol. 44(14), pp. 3909-3912.

    Article  Google Scholar 

  20. N. Gupta, V. V. Bhanu Prasad, V. Madhu, B. Basu: Defence Science Journal, 2012, vol. 62, pp. 381-389.

    Google Scholar 

  21. D. A. Hoke, M. A. Meyers, L. W. Meyer, G. T. Gray III: Metallurgical Transactions A, 1992, vol. 23, pp. 77-86.

    Article  Google Scholar 

  22. D. Zhu, G. Wu, G. Chen, Q. Zhang: Materials Science and Engineering A, 2008, vol. 487, pp. 536-540.

    Article  Google Scholar 

  23. A. Kidane, A. Shukla: Journal of Materials Science, 2008, vol. 43, pp. 2771-2777.

    Article  Google Scholar 

  24. N. Gupta, A. Mukhopadhyay, K. Pavani, B. Basu: Materials Science and Engineering A, 2012, vol. 534, pp. 111-118.

    Article  Google Scholar 

  25. W. C. Oliver, G. M. Pharr: Journal of Materials Research, 1992, vol. 7, pp. 1564-1583.

    Article  Google Scholar 

  26. L. Prchlik: Journal of Materials Science, 2004, vol 39(4), pp.1185-1193.

    Article  Google Scholar 

  27. G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall: Journal of American Ceramic Society, 1981, vol. 64(9), pp. 533-538.

    Article  Google Scholar 

  28. G. Subhash and G. Ravichandran: Split Hopkinson Pressure Bar Testing of Ceramics, ASM Handbook, Mechanical Testing and Evaluation, vol. 8, ASM International, Materials Park, 2000, pp. 497–504.

    Google Scholar 

  29. Y. Li, K. T. Ramesh, E. S. C. Chin: International Journal of Solids Structure, 2001, vol. 38, pp. 6045-6061.

    Article  Google Scholar 

  30. K. F. Graff: Experimental studies in longitudinal waves: Wave motion in elastic solids, pp 130-132, Dover Publications INC., New York, 1975.

    Google Scholar 

  31. G.B. Raju and B. Basu: J. Am. Ceram. Soc., 2007, vol. 90(11), pp. 3415–23.

    Article  Google Scholar 

  32. D. Jain, K. M. Reddy, A. Mukhopadhyay, B. Basu: Material Science and Engineering A, 2010, vol. 528, pp. 200-207.

    Article  Google Scholar 

  33. K. M. Reddy, N. Kumar, B. Basu; Scripta Materialia, 2010, vol. 62, pp.435-438.

    Article  Google Scholar 

  34. K. M. Reddy, A. Mukhopadhyay, B. Basu: Journal of European Ceramic Society, 2010, vol. 30, pp. 3363-3375.

    Article  Google Scholar 

  35. S. Nakane, Y. Takano, M. Yoshinaka, K. Hirota, O. Yamaguchi: Journal of American Ceramic Society, 1999, vol. 82(6), pp.1627-1628.

    Article  Google Scholar 

  36. M. Eriksson, D. Salamon, M. Nygren, Z. J. Shen: Materials Science and Engineering A, 2008, vol. 475(1-2), pp. 101-104.

    Article  Google Scholar 

  37. J. L. Murray, P. K. Liao, K. E. Spear: Bulletin of alloy phase diagrams, 1986, vol. 7(6), pp. 550-555.

    Article  Google Scholar 

  38. M. Masanta, S. M. Shariff, A. R. Choudhury: Materials science and engineering A, 2011, vol. 528(16-17), pp. 5327-5335.

    Article  Google Scholar 

  39. H. Wang, K. T. Ramesh: Acta Materialia, 2004, vol. 52, pp. 355-367.

    Article  Google Scholar 

  40. H. Horii, S. Nemat Nassar: Journal of Geophysical Research, 1985, vol. 90, pp. 3105-3125.

    Article  Google Scholar 

  41. W. Chen, G. Ravichandran: International Journal of Fracture, 2000, vol. 101, pp. 141-159.

    Article  Google Scholar 

  42. G. Hu, C. Q. Chen, K. T. Ramesh, J. W. McCauley: Scripta Materialia, 2012, vol. 66, pp. 527-530.

    Article  Google Scholar 

  43. K. Biswas, A.S. Sharma, and B. Basu: Scripta Mater., 2013, vol. 69(2), pp. 122–26.

    Article  Google Scholar 

  44. A. G. Evans, K. T. Faber: Journal of American Ceramic Society, 1981, vol. 64(7), pp. 394-398.

    Article  Google Scholar 

  45. M. Taya, S. Hayashi, A. S. Kobayashi, H. S. Yoon: Journal of American Ceramic Society, 1990, vol. 73(5), pp. 1382-1391.

    Article  Google Scholar 

  46. K. T. Faber, A. G. Evans: Acta Metallurgica et Materailia, 1983, vol. 31(4), pp. 565-576.

    Article  Google Scholar 

  47. R. G. Munro: Journal of Research of National Institute of Standards and Technology, 2000, vol. 105(5), pp. 709-720.

    Article  Google Scholar 

  48. Q. Li, Y. B. Xu, M. N. Bassim: Journal of Materials Processing Technology, 2004, vol. 155-156, pp. 1889-1892.

    Article  Google Scholar 

  49. M. H. Sadd: Elasticity: Theory, Applications and Numerics, Elsevier Academic Presss, New York, 2005.

    Google Scholar 

  50. A.R. Khoei: Computational Plasticity in Powder Forming Process, Elsevier, Amsterdam, 2005, pp. 449.

    Google Scholar 

  51. M. Yu: Appl. Mech. Rev., 2002, vol. 55, pp. 129–69.

    Article  Google Scholar 

  52. B. Basu, M. Kalin: Tribology of ceramics and composites, John Wiley & Sons Inc., New Jersey, 2011.

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Defence Research and Development Organization, India for financial support and Department of Science and Technology, India to procure SPS facility at IIT Kanpur. The financial support of Department of Science and Technology (FIST) for the high speed camera used in this study is acknowledged. We also acknowledge the Thematic Unit of Excellence on Soft Nanofabrication with Applications in Energy, Environment and Bioplatforms at IIT Kanpur for the SEM facility. We also acknowledge Mr. B. Sunilkumar and Mr. Ravikumar K. of Indian Institute of Science, Bangalore and Mr. Manoj of IIT Kanpur for extending their help during the experimentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Additional information

Manuscript submitted December 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Parameswaran, V. & Basu, B. Microstructure Development, Nanomechanical, and Dynamic Compression Properties of Spark Plasma Sintered TiB2-Ti-Based Homogeneous and Bi-layered Composites. Metall Mater Trans A 45, 4646–4664 (2014). https://doi.org/10.1007/s11661-014-2383-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2383-1

Keywords

Navigation