Skip to main content
Log in

Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The additive manufacturing of bulk-form TiC/Ti nanocomposite parts was performed using Selective Laser Melting (SLM). Two categories of nanopowder, i.e., ball-milled TiC/Ti nanocomposite powder and directly mechanical mixed nano-TiC/Ti powder, were used for SLM. The influences of nanopowder characteristics and laser processing parameters on the densification behavior, microstructural features, and tribological properties of the SLM-processed TiC/Ti nanocomposite parts were studied. The study showed that the densification of TiC/Ti nanocomposite parts was affected by both laser energy density and powder categories. Using an insufficient laser energy density of 0.25 kJ/m lowered SLM densification rate, because of the occurrence of balling effect. An increase in the laser energy density above 0.33 kJ/m produced near fully dense SLM parts. The SLM densification levels of the ball-milled TiC/Ti nanocomposite powder were generally higher than that of the directly mixed nano-TiC/Ti powder. The TiC-reinforcing phase in SLM-processed TiC/Ti parts typically had a lamellar nanostructure with a nanoscale thickness, completely differing from the starting nanoparticle morphology before SLM. The lamellar nanostructure of the TiC reinforcement in SLM-processed ball-milled TiC/Ti nanocomposite parts could be maintained within a wide range of laser energy densities. However, the microstructures of the SLM-processed, directly mixed nano-TiC/Ti powder were sensitive to SLM parameters, and the TiC reinforcement experienced a successive change from the lamellar nanostructure to the relatively coarsened dendritic microstructure as laser energy density increased. A combination of the sufficiently high SLM densification rate and the formation of the nanostructured TiC reinforcement favored the improvement of the tribological property, leading to the considerably low coefficient of friction of 0.22 and wear rate of 2.8 × 10−16 m3 N−1 m−1. The coarsening and resultant disappearance of nanoscale TiC reinforcement in SLM-consolidated directly mixed nano-TiC/Ti powder at a high laser energy density lowered the tribological performance considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.

    Article  Google Scholar 

  2. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: CIRP Ann. Manuf. Technol., 2007, vol. 56, pp. 730–59.

    Article  Google Scholar 

  3. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133–64.

    Article  Google Scholar 

  4. P. Yu, M. Yan, G.B. Schaffer, and M. Qian: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2417–24.

    Article  Google Scholar 

  5. B. Zheng, J.E. Smugeresky, Y. Zhou, D. Baker, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1196–205.

    Article  Google Scholar 

  6. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.

    Article  Google Scholar 

  7. V.D. Manvatkar, A.A. Gokhale, G. Jagan Reddy, A. Venkataramana, and A. De: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 4080–87.

    Article  Google Scholar 

  8. W.P. Liu and J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40.

    Google Scholar 

  9. R. Banerjee, A. Genç, P.C. Collins, and H.L. Fraser: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2143–52.

    Article  Google Scholar 

  10. B.V. Krishna, S. Bose, and A. Bandyopadhyay: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1096–103.

    Article  Google Scholar 

  11. I. Yadroitsev, L. Thivillon, Ph. Bertrand, and I. Smurov: Appl. Surf. Sci., vol. 254, pp. 980–83.

  12. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson: J. Mater. Process Technol., 2008, vol. 195, pp. 77–87.

    Article  Google Scholar 

  13. P. Fox, S. Pogson, C.J. Sutcliffe, and E. Jones: Surf. Coat Technol., 2008, vol. 202, pp. 5001–07.

    Article  Google Scholar 

  14. C.Z. Yan, L. Hao, A. Hussein, and D. Raymont: Int. J. Mach. Tools Manuf., 2012, vol. 62, pp. 32–38.

    Article  Google Scholar 

  15. D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.

    Article  Google Scholar 

  16. M. Zhong and W. Liu: Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 2010, vol. 224, pp. 1041–60.

    Article  Google Scholar 

  17. M. Das, V.K. Balla, D. Basu, S. Bose, and A. Bandyopadhyay: Scripta Mater., 2010, vol. 63, pp. 438–41.

    Article  Google Scholar 

  18. B. Duan and M. Wang: MRS Bull., 2011, vol. 36, pp. 998–1005.

    Article  Google Scholar 

  19. S.R. Athreya, K. Kalaitzidou, and S. Das: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2637–42.

    Article  Google Scholar 

  20. S. Dadbakhsh and L. Hao: Adv. Eng. Mater., 2012, vol. 14, pp. 45–48.

    Article  Google Scholar 

  21. S.S. Singh, D. Roy, R. Mitra, R.V. Subba Rao, R.K. Dayal, B. Raj, I. Manna: Mater. Sci. Eng. A, 2009, vol. 501, pp. 242–47.

    Article  Google Scholar 

  22. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Mater. Sci. Eng. R, 2006, vol. 54, pp.121–285.

    Article  Google Scholar 

  23. A. Mortensen and J. Llorca: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 243–70.

    Article  Google Scholar 

  24. S.K. Kumar and R. Krishnamoorti: Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 37–58.

    Article  Google Scholar 

  25. S.C. Tjong: Adv. Eng. Mater., 2007, vol. 9, pp. 639–52.

    Article  Google Scholar 

  26. M. Sherif El-Eskandarany, M. Omori, T. Hirai, T.J. Konno, K. Sumiyama, and K. Suzuki: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 157–64.

    Article  Google Scholar 

  27. I.V. Alexandrov, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, and T.C. Lowe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2253–60.

    Article  Google Scholar 

  28. P. Asadi, G. Faraji, A. Masoumi, and M.K. Besharati Givi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2820–32.

    Article  Google Scholar 

  29. V. Udhayabanu, K.R. Ravi, K. Murugan, D. Sivaprahasam, and B.S. Murty: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2085–93.

    Article  Google Scholar 

  30. A.A.M. da Silva, J.F. dos Santos, and T.R. Strohaecker: Compos. Sci. Technol., 2005, vol. 65, pp. 1749–55.

    Article  Google Scholar 

  31. L. Xiao, W. Lu, J. Qin, Y. Chen, D. Zhang, M. Wang, F. Zhu, B. Ji: Compos. Sci. Technol., 2009, vol. 69, pp. 1925–31.

    Article  Google Scholar 

  32. D.D. Gu, G.B. Meng, C. Li, W. Meiners, and R. Poprawe: Scripta Mater., 2012, vol. 67, pp. 185–88.

    Article  Google Scholar 

  33. D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Compos. Sci. Technol., 2011, vol. 71, pp. 1612–20.

    Article  Google Scholar 

  34. A. Simchi, F. Petzoldt, and H. Pohl: J. Mater. Process Technol., 2003, vol. 141, pp. 319–28.

    Article  Google Scholar 

  35. D.D. Gu and Y.F. Shen: J. Alloys Compd., 2009, vol. 473, pp. 107–15.

    Article  Google Scholar 

  36. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow: Rapid Prototyping J., 1995, vol. 1, pp. 26–36.

    Article  Google Scholar 

  37. A. Simchi, F. Petzoldt, and H. Pohl: Int. J. Powder Metall., 2001, vol. 37, pp. 49–61.

    Google Scholar 

  38. N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, and M.B. Ignatiev: Rapid Prototyping J., 2004, vol. 10, pp. 78–87.

    Article  Google Scholar 

  39. D.D. Gu and Y.F. Shen: Mater. Design, 2009, vol. 30, pp. 2903–10.

    Article  Google Scholar 

  40. P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology, 1st ed., Wiley-VCH, Weinheim, Germany, 2003.

    Book  Google Scholar 

  41. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon: Acta Mater., 2003, vol. 51, pp. 1651–62.

    Article  Google Scholar 

  42. I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, UK, 1993.

    Google Scholar 

  43. Y.T. Chan and S.K. Choi: J. Appl. Phys., 1992, vol. 72, pp. 3741–49.

    Article  Google Scholar 

  44. J. Tille and J.C. Kelly: Brit. J. Appl. Phys., 1963, vol. 14, pp. 717–19.

    Article  Google Scholar 

  45. H.J. Niu and I.T.H. Chang: Scripta Mater., 1999, vol. 41, pp. 1229–34.

    Article  Google Scholar 

  46. S. Das: Adv. Eng. Mater., 2003, vol. 5, pp. 701–711.

    Article  Google Scholar 

  47. V.V. Semak, G.A. Knorovsky, D.O. MacCallum, and R. Allen Roach: J. Phys. D Appl. Phys., 2006, vol. 39, pp. 590–95.

    Article  Google Scholar 

  48. L.R. Xu and S. Sengupta: J. Nanosci. Nanotechnol., 2005, vol. 5, pp. 620–26.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (No. 51104090), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), and the NUAA Fundamental Research Funds (No. NE2013103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Additional information

Manuscript submitted August 26, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, D., Wang, H. & Zhang, G. Selective Laser Melting Additive Manufacturing of Ti-Based Nanocomposites: The Role of Nanopowder. Metall Mater Trans A 45, 464–476 (2014). https://doi.org/10.1007/s11661-013-1968-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1968-4

Keywords

Navigation