Skip to main content

Advertisement

Log in

Synthesizing of nanocomposite WC/MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A ceramic/ceramic nanocomposite powder of WC/MgO has been fabricated by high-energy ball milling a mixture of elemental Mg and powders of C with WO3 under an argon gas atmosphere at room temperature. During the early stage of milling (at 1.8 ks), the WO3 and C powders are embedded into the soft matrix of Mg (the reducing agent) particles to form coarse composite powders of the reactant materials. Increasing the milling time (to 22 ks) leads to the formation of fresh active surfaces of Mg, which have a high reducing potential and react with the WO3 in a typical oxidation/reduction reaction. At the end of this stage (at 43 ks), the Mg powders are oxidized to MgO, whereas the WO3 is reduced completely to metallic W. During the last stage of milling (86 to 173 ks), a solid-state reaction takes place between W and the unreacted C powders to yield nanocomposite WC/MgO particles. This end-product was consolidated in vacuum at 1963 K with a pressure of 19.6 to 38.2 MPa for 0.3 ks, using a plasma-activated sintering (PAS) method. The sintered sample is fully dense (above 99.5 pct of the theoretical density) and contains nanocrystalline grains of less than 50 nm in diameter. This fine grain structure offers an opportunity for the composite material to combine high values of two opposite properties, i.e., hardness and fracture toughness (K c ), of 15 GPa and 14 MPa √m, respectively. Here, we propose this nanocomposite material for a wide range of industrial applications, including tips for cutting tools and tips for oil drilling equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Benjamin: Metall. Trans., 1970, vol. 1, pp. 2943–51.

    CAS  Google Scholar 

  2. L.G. Wright and A. Wilox: Metall. Trans., 1974, vol. 5, pp. 957–60.

    CAS  Google Scholar 

  3. G.H. Gessinger: Metall. Trans. A, 1976, vol. 7A, pp. 1203–09.

    CAS  Google Scholar 

  4. C.C. Koch, O.B. Cavin, C.G. MacKamey, and J.O. Scarbourgh: Appl. Phys. Lett., 1983, vol. 43, pp. 1017–19.

    Article  CAS  Google Scholar 

  5. R. Schwarz and C.C. Koch: Appl. Phys. Lett., 1986, vol. 49, pp. 146–49.

    Article  CAS  Google Scholar 

  6. M. Sherif El-Eskandarany: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3267–78.

    CAS  Google Scholar 

  7. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki: Appl. Phys. Lett., 1997, vol. 70, pp. 1679–81.

    Article  CAS  Google Scholar 

  8. M. Sherif El-Eskandarany, M. Omori, T.J. Konno, K. Sumiyama, T. Hirai, and K. Suzuki: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1973–81.

    Article  Google Scholar 

  9. M. Sherif El-Eskandarany, H.A. Ahmed, K. Sumiyama, and K. Suzuki: J. Alloys Compounds, 1995, vol. 218 (1), pp. 36–43.

    Article  CAS  Google Scholar 

  10. M. Sherif El-Eskandarany: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2374–82.

    Google Scholar 

  11. M. Sherif El-Eskandarany: J. Alloys Compounds, 1998, vol. 279, pp. 263–71.

    Article  Google Scholar 

  12. M. Sherif El-Eskandarany, K. Aoki, and K. Suzuki: J. Less-Common Met., 1990, vol. 167, pp. 113–18.

    Article  CAS  Google Scholar 

  13. M. Sherif El-Eskandarany: Mater. Trans. JIM, 1995, vol. 36, pp. 182–87

    CAS  Google Scholar 

  14. M. Sherif El-Eskandarany, M. Omori, M. Ishikuro, T.J. Konno, K. Takada, K. Sumiyama, T. Hirai, and K. Suzuki: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4210–13.

    Article  CAS  Google Scholar 

  15. Stephen W.H. Yih and Chun T. Wang: Tungsten, Plenum Press, New York, NY, 1979, p. 392.

    Google Scholar 

  16. S. Mi and T.H. Courtney: Scripta Metall., 1997, vol. 38, pp. 171–76.

    Article  Google Scholar 

  17. M. Ishiyama: Proc. Powder Metallurgy World Congr., Japan Society of Powder and Powder Metallurgy, JSPM, Kyoto, 1993, pp. 931–34.

    Google Scholar 

  18. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: J. Am. Ceram. Soc., 1981, vol. 64 (9), pp. 533–38.

    Article  CAS  Google Scholar 

  19. Fracture Mechanics Applied to Brittle Materials, S.W. Freiman, ASTM Special Technical Publication No. 678, S.W. Freiman, ed., ASTM, Philadelphia, PA, 1979.

  20. F.R. Boer, R. Boom, W.C. Mattens, A.R. Miedema, and A.K. Nissen: Cohesion in Metals—Transition Metal Alloys, 1 st ed., North-Holland, Amsterdam, 1988, vol. 1, pp. 751 and 754.

    Google Scholar 

  21. M. Sherif El-Eskandarany: J. Jpn. Soc. Powder and Powder Metallurgy (JSPM), 1997, vol. 44, pp. 1131–41.

    Google Scholar 

  22. W.D. Schubert, H. Neumeister, G. Kinger, and B. Lux: Int. J. Refr. Met. Hard Mater., 1998, vol. 16 (2) pp. 133–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Eskandarany, M.S., Omori, M., Hirai, T. et al. Synthesizing of nanocomposite WC/MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering. Metall Mater Trans A 32, 157–164 (2001). https://doi.org/10.1007/s11661-001-0111-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0111-0

Keywords

Navigation