Skip to main content
Log in

Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In-situ Ti-TiB composites have been processed via two different routes: arc by melting elemental Ti and B and by direct laser deposition of a blend of elemental Ti and B powders using the laser-engineered net-shaping (LENS) process. The conventionally cast composite exhibits a significantly coarser-scale microstructure as compared with the LENS-deposited composite and consists of primary proeutectic TiB precipitates dispersed in an eutectic matrix. The microstructure of the LENS-deposited Ti-TiB composite consists of a fine-scale homogeneous dispersion of primary TiB precipitates in an α-Ti matrix. In addition, a nanometer-scale dispersion of secondary TiB precipitates is formed in the α matrix. The hardness and modulus of these composites have been measured using nanoindentation techniques. The ability to produce such a fine dispersion of TiB precipitates in near-net-shape, near-full-density Ti-TiB composites processed using LENS could potentially be highly beneficial from the viewpoint of applicability of these metal-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.O. Brown, E.M. Breinan, and B.H. Kear: U.S. Patent No. 4,323,756, 1982.

  2. D.M. Keicher and J.E. Smugeresky: JOM, 1997, vol. 49 (5), pp. 51–54.

    CAS  Google Scholar 

  3. J.O. Milewski, G.K. Lewis, D.J. Thoma, G.I. Keel, R.B. Nemec, and R.A. Reinert: J. Mater. Proc. Technol., 1998, vol. 75 (1–3), pp. 165–72.

    Article  Google Scholar 

  4. J. Brooks, C. Robino, T. Headley, S. Goods, and M. Griffith: Solid Freeform Fabrication Proc., University of Texas, Austin, TX, 1999, p. 375.

    Google Scholar 

  5. T. Takeda, W.M. Steen, and D.R.F. West: Proc. ICALEO’84, 1984, vol. 44, pp. 151–56.

    CAS  Google Scholar 

  6. W.M. Steen, R.M. Vilar, K.G. Watkins, M.G.S. Ferreira, P. Carvalho, C.L. Sexton, M. Pontinha, and M. McMohan: Proc. ICALEO’92, 1992, vol. 52, pp. 278–84.

    Google Scholar 

  7. K.I. Schwendner, R. Banerjee, P.C. Collins, C.A. Brice, and H.L. Fraser: Scripta Mater., 2001, vol. 45 (10), pp. 1123–29.

    Article  CAS  Google Scholar 

  8. Z. Fan, A.P. Miodownik, L. Chandrasekaran, and C.M. Ward-Close: J. Mater. Sci., 1995, vol. 30 (7), pp. 1653–60.

    Article  CAS  Google Scholar 

  9. Z. Fan and A.P. Miodownik: Acta Mater., 1996, vol. 44 (1), pp. 93–110.

    Article  CAS  Google Scholar 

  10. T. Yamamoto, A. Otsuki, K. Ishihara, and P.H. Shingu: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 647–51.

    Google Scholar 

  11. M. Kobayashi, K. Funami, S. Suzuki, and C. Ouchi: Mater. Sci. Eng. A, 1998, vol. 243 (1–2), pp. 279–84.

    Google Scholar 

  12. X.N. Zhang, W. Lu, D. Zhang, R. Wu, Y. Bian, and P. Fang: Scripta Mater., 1999, vol. 41 (1), pp. 39–46.

    Article  CAS  Google Scholar 

  13. Z.Y. Ma, S.C. Tjong, and L. Gen: Scripta Mater., 2000, vol. 42 (4), pp. 367–373.

    Article  Google Scholar 

  14. T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, and C.M. Ward-Close: Mater. Sci. Eng. A, 2000, vol. 282 (1–2), pp. 240–50.

    Google Scholar 

  15. J.L. Murray: Handbook of Binary Phase Diagrams, 1987, p. 1347.

  16. A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Matthews, and A.R. Miedema: CALPHAD, 1983, vol. 7 (1), pp. 51–70.

    Article  CAS  Google Scholar 

  17. W. Hofmeister, M. Griffith, M. Ensz, and J. Smugeresky: JOM, 2001, vol. 53 (9), pp. 30–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, R., Genç, A., Collins, P.C. et al. Comparison of microstructural evolution in laser-deposited and arc-melted In-Situ Ti-TiB composites. Metall Mater Trans A 35, 2143–2152 (2004). https://doi.org/10.1007/s11661-004-0162-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0162-0

Keywords

Navigation