Skip to main content
Log in

Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part I: Microstructure Evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum alloys are widely used because they are lightweight and exhibit high strength. In recent years, spark plasma sintering (SPS) technology has emerged as a viable approach to sinter materials due to its application of rapid heating and high pressure. In this study, SPS was chosen to consolidate dense ultrafine-grained (UFG) bulk samples using cryomilled nanostructured Al 5083 alloy (Al-4.5Mg-0.57Mn-0.25Fe, wt pct) powder. Both bimodal microstructure and banded structure were observed through transmission electron microscopy (TEM) investigation. The evolution of such microstructures can be attributed to the starting powder and the process conditions, which are associated with the thermal, electrical, and pressure fields present during SPS. A finite element method (FEM) was also applied to investigate distributions in temperature, current, and stress between metallic powder particles. The FEM results reveal that the localized heating, deformation, and thermal activation occurring at interparticle regions are associated with the formation of the special microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Omori: Mater. Sci. Eng. A, 2000, vol. 287, pp. 183–88.

    Article  Google Scholar 

  2. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Scripta Mater., 2006, vol. 54, pp. 823–28.

    Article  CAS  Google Scholar 

  3. J. Ye, L. Ajdelsztajn, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2569–79.

    Article  CAS  Google Scholar 

  4. A. Zuniga, L. Ajdelsztajn, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1343–52.

    Article  CAS  Google Scholar 

  5. L.L. Ye, Z.G. Liu, K. Raviprasad, M.X. Quan, M. Umemoto, and Z. Q. Hu: Mater. Sci. Eng. A, 1998, vol. 241, pp. 290–93.

    Article  Google Scholar 

  6. A.P. Newbery, S.R. Nutt, and E.J. Lavernia: JOM, 2006, vol. 58, pp. 56–61.

    Article  CAS  Google Scholar 

  7. K.-T. Park, J.H. Park, Y.S. Lee, and W.J. Nam: Mater. Sci. Eng. A, 2005, vol. 408, pp. 102–09.

    Article  Google Scholar 

  8. B.Q. Han, J.Y. Huang, Y.T. Zhu, and E.J. Lavernia: Acta Mater., 2006, vol. 54, pp. 3015–24.

    Article  CAS  Google Scholar 

  9. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938–44.

    Article  CAS  Google Scholar 

  10. E.L. Huskins, B. Cao, and K.T. Ramesh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1292–98.

    Article  Google Scholar 

  11. U. Anselmi-Tamburini, S. Gennari, J.E. Garay, and Z.A. Munir: Mater. Sci. Eng. A, 2005, vol. 394, pp. 139–48.

    Article  Google Scholar 

  12. A. Zavaliangos, J. Zhang, M. Krammer, and J.R. Groza: Mater. Sci. Eng. A, 2004, vol. 379, pp. 218–28.

    Article  Google Scholar 

  13. C. Wang, L. Cheng, and Z. Zhao: Comput. Mater. Sci., 2010, vol. 49, pp. 351–62.

    Article  CAS  Google Scholar 

  14. D. Liu, Y. Xiong, T.D. Topping, Y. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2011, vol. 42A, DOI:10.1007/s11661-011-0841-6.

  15. A.P. Newbery, B. Ahn, T.D. Topping, P.S. Pao, S.R. Nutt, and E.J. Lavernia: J. Mater. Process. Technol., 2008, vol. 203, pp. 37–45.

    Article  CAS  Google Scholar 

  16. H.P. Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, NY, 1974.

    Google Scholar 

  17. COMSOL Multiphysics User’s Guide 4.1, http://www.comsol.com/, 2011.

  18. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297–302.

    Article  CAS  Google Scholar 

  19. R. van Hout and J. Katz: J. Aerosol Sci., 2004, vol. 35, pp. 1369–84.

    Article  Google Scholar 

  20. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Mater. Sci. Eng. A, 2009, vol. 527, pp. 305–16.

    Article  Google Scholar 

  21. T.B. Massalski: Binary Alloy Phase Diagram, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

    Google Scholar 

  22. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee: in Thermophysical Properties of Matter, IFI/Plenum, New York, NY, 1977, vol. 13.

  23. C.Y. Yu, P.W. Kao, and C.P. Chang: Acta Mater., 2005, vol. 53, pp. 4019–28.

    Article  CAS  Google Scholar 

  24. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1089–95.

    Article  Google Scholar 

  25. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1996.

    Google Scholar 

  26. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  CAS  Google Scholar 

  27. J.E. Garay, S.C. Glade, P. Asoka-Kumar, U. Anselmi-Tamburini, and Z.A. Munir: J. Appl. Phys., 2006, vol. 99, pp. 24313-1–24313-7.

    Article  Google Scholar 

Download references

Acknowledgments

This article is based upon work supported by the United States Army TACOM-ARDEC under Contract No. W05QKN-09-C-118 and the Office of Naval Research with Grant No. N00014-07-1-0745. Part of DL’s work is also supported by the Young Scientist Foundation of Shandong Province, China (Grant No. BS2009CL043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Schoenung.

Additional information

Manuscript submitted February 24, 2011.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11661_2011_933_MOESM1_ESM.gif

A video clip associated with Figure 10 (GIF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Y., Liu, D., Li, Y. et al. Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part I: Microstructure Evolution. Metall Mater Trans A 43, 327–339 (2012). https://doi.org/10.1007/s11661-011-0933-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0933-3

Keywords

Navigation