Skip to main content
Log in

Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part II: Influence of Processing Conditions on Densification and Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, nanostructured Al 5083 powders, which were prepared via cryomilling, were consolidated using spark plasma sintering (SPS). The influence of processing conditions, e.g., the loading mode, starting microstructure (i.e., atomized vs cryomilled powders), sintering pressure, sintering temperature, and powder particle size on the consolidation response and associated mechanical properties were studied. Additionally, the mechanisms that govern densification during SPS were discussed also. The results reported herein suggest that the morphology and microstructure of the cryomilled powder resulted in an enhanced densification rate compared with that of atomized powder. The pressure-loading mode had a significant effect on the mechanical properties of the samples consolidated by SPS. The consolidated compact revealed differences in mechanical response when tested along the SPS loading axis and radial directions. Higher sintering pressures improved both the strength and ductility of the samples. The influence of grain size on diffusion was considered on the basis of available diffusion equations, and the results show that densification was attributed primarily to a plastic flow mechanism during the loading pressure period. Once the final pressure was applied, power law creep became the dominant densification mechanism. Higher sintering temperature improved the ductility of the consolidated compact at the expense of strength, whereas samples sintered at lower temperature exhibited brittle behavior. Finally, densification rate was found to be inversely proportional to the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Lu: Int. Mater. Rev., 2008, vol. 53, pp. 21-38.

    Article  CAS  Google Scholar 

  2. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-77.

    Article  CAS  Google Scholar 

  3. A. Zuniga, L. Ajdelsztajn, and E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1343-52.

    Article  CAS  Google Scholar 

  4. A.P. Newbery, S.R. Nutt, and E.J. Lavernia: JOM, 2006, vol. 58, pp. 56-61.

    Article  CAS  Google Scholar 

  5. J.R. Davis: ASM Specialty Handbook—Aluminum and Aluminu Alloys, ASM International, Materials Park, OH, 1994, pp. 675-76.

    Google Scholar 

  6. W.F. Hosford: Mechanical Behavior of Materials, Cambridge University Press, Cambridge, UK, 2005, pp. 151-52.

    Google Scholar 

  7. M. Zadra, F. Casari, L. Girardini, and A. Molinari: Powder Metall., 2007, vol. 50, pp. 40-45.

    Article  CAS  Google Scholar 

  8. F. Guillard, A. Allemand, J.D. Lulewicz, and J. Galy: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 2725-28.

    Article  CAS  Google Scholar 

  9. S.J. Cho and K.J. Yoon: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2458-60.

    Article  CAS  Google Scholar 

  10. X.Y. Song, X.M. Liu, and J.X. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494-500.

    Article  CAS  Google Scholar 

  11. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, NJ, 1999, pp. 70-71.

    Google Scholar 

  12. ASM: Metals Handbook, American Society for Metals, Materials Park, OH, 1990, p. 212.

  13. J.M. Zheng and P.F. Johnson: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2760-68.

    Article  CAS  Google Scholar 

  14. Q. Jiang, S.H. Zhang, and J.C. Li: Solid State Commun., 2004, vol. 130, pp. 581-84.

    Article  CAS  Google Scholar 

  15. R.M. German: Sintering Theory and Practice, Wiley, New York, NY, 1996, pp. 313-39.

    Google Scholar 

  16. A.S. Helle, K.E. Easterling, and M.F. Ashby: Acta Metall., 1985, vol. 33, pp. 2163-74.

    Article  CAS  Google Scholar 

  17. R.L. Coble: J. Appl. Phys., 1970, vol. 41, pp. 4798-4807.

    Article  Google Scholar 

  18. D.S. Wilkinson and M.F. Ashby: Sintering and Catalysis, Ed. G.C. Kuczynski, Plenum Press, New York, 1975, pp. 473–92.

  19. D.S. Wilkinson and M.F. Ashby: Acta Metall., 1975, vol. 23, pp. 1277-85.

    Article  CAS  Google Scholar 

  20. J. Zhao, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir: J. Appl. Phys., 2007, vol. 102, pp. 114902-07.

    Article  Google Scholar 

  21. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Mater. Sci. Eng. A, 2005, vol. 407, pp. 24-30.

    Article  Google Scholar 

  22. E.J. Lavernia, B.Q. Han, and J.M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207-14.

    Article  Google Scholar 

  23. I. Roy, M. Chauhan, E.J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 721-30.

    Article  CAS  Google Scholar 

  24. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777-91.

    Article  CAS  Google Scholar 

  25. T.T. Sasaki, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3529-38.

    Article  CAS  Google Scholar 

  26. B. Sirinivasarao, K. Oh-Ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277-86.

    Article  Google Scholar 

  27. Z.Z. Fang and H. Wang: Int. Mater. Rev., 2008, vol. 53, pp. 326-52.

    Article  CAS  Google Scholar 

  28. J.P. Smith and G.L. Messing: J. Am. Ceram. Soc, 1984, vol. 67, pp. 238-42.

    Article  CAS  Google Scholar 

  29. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2010, vol. 58, pp. 1732-40.

    Article  CAS  Google Scholar 

  30. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, The Plasticility and Creep of Metals and Ceramics, Pergamon Press, New York, 1982, pp. 20-29.

    Google Scholar 

  31. P.D. Desai: Int. J. Thermophys., 1987, vol. 8, pp. 621-38.

    Article  CAS  Google Scholar 

  32. E. Arzt, M.F. Ashby, and K.E. Easterling: Metall. Trans. Phys. Metall. Mater. Sci., 1983, vol. 14, pp. 211-21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is based on work supported by the U.S. Army TACOM-ARDEC under Contract No. W05QKN-09-C-118 and the Office of Naval Research with Grant No. N00014-07-1-0745. Part of D. Liu’s work is also supported by Grant No. BS2009CL043 from the Young Scientist Foundation of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie M. Schoenung.

Additional information

Manuscript submitted March 4, 2011.

Appendices

APPENDIX A. Parameters Used in this Paper

Table AI. Parameters Used in this Paper

Material Property

Aluminum

Reference

Crystallographic and thermal data

  

Atomic volume Ω (m3)

1.66 × 10−29

30

Burgers vector b (m)

2.86 × 10−10

30

Melting temperature T M (K)

933

30

Modulus

  

Shear modulus at 300 K (27 °C), U 0 (MPa)

2.54 × 104

30

Temperature dependence of modulus, \( \frac{{T_{M} dU}}{{U_{0} dt}} \)

–0.5

30

Lattice diffusion

  

Preexponential, D 0V (m2/s)

1.7 × 10−4

30

Activation energy, Q V (kJ/mol)

142

30

Boundary diffusion

  

Preexponential, δD 0b (m2/s)

5.0 × 10−14

30

Activation energy, Q b (kJ/mol)

84

30

Power-law creep

  

Exponent n

4.4

30

Dorn constant A

3.4 × 106

30

Applied load P A (MPa)

50

 

Radius of particle, B (μm)

10

 

Fractional green density ρg

0.64

16

Yield stress σ y of Al 5083 at 673 K (400 °C) (MPa)*

24

 

Diameter of the sample ϕ (mm)

20

 

Electric current flowing through the sample I s (A)

800

 

Radius of the particle r p (μm)

10

 

Specific heat of the material C v (J/(kg K))

900

5

Mass density of the particle ρ m (g/cm3)

2.66

5

Electric resistivity of the material ρ e (nΩ m)

59.5

5

A duration of the pulsed current Δt (ms)

2.7 × 12 = 32.4

 

Bulk melting entropy S vib (J mol−1 K−1)

42.931

31

Radius of spherical nanocyrstal r (nm)

20

 

Atomic diameter h (nm)

0.286

15

\( {\text{U}} = {\text{U}}_{0} [1 + \frac{{({{\rm T}} - 300)}}{{{{\rm T}}_{M} }}\frac{{{{\rm T}}_{M} dU}}{{{{\rm U}}_{0} dt}}] \)

 

30

\( D_{V} = D_{0V} { \exp }( - \frac{{Q_{V} }}{\text{RT}}),\,\delta D_{b} = D_{0b} { \exp }( - \frac{{Q_{b} }}{\text{RT}}) \)

 

30

\( P = \frac{{P_{A} (1 - \rho_{g} )}}{{\rho^{2} (\rho - \rho_{g} )}} + \frac{{2\gamma_{SV} }}{{r_{pore} }} - \frac{{(1 - \rho_{c} )\rho }}{{(1 - \rho )\rho_{c} }}P_{0} \)

 

32

\( r_{\text{pore}} = B(\frac{1 - \rho }{6})^{1/3} \) is the pore radius, P 0 is the outgassing pressure, and ρ c is the density at which pores close

 

32

  1. *Extrapolated by polynomial fitting of the yield stress of Al 5083 at an increased temperature[5]

APPENDIX B. Calculation of the Theoretical Density of Al 5083 Consolidated by SPS

The O atoms exist in the form of Al2O3. So the content of alumina can be calculated by:

$$ 0.56 {\text{ pct}} \times \left( {101.96/48} \right) = 1.1896 {\text{ pct}} $$

The N atoms exist in the form of interstitial atoms or nitride, AlN. The content of the former is about 0.1 wt pct and the latter is 0.42 wt pct.[29] Consequently, the percentage of AlN can be estimated by:

$$ 0. 1 {\text{ pct}} \times \left( { 40. 9 9/ 1 4.0 1} \right) = 0. 2 9 2 6 {\text{ pct}} $$

The density of the sample is:

$$ \frac{100}{{\frac{4.5}{1.74} + \frac{0.57}{7.43} + \frac{0.25}{7.86} + \frac{1.1896}{3.95} + \frac{0.29263}{3.26} + \frac{0.2}{2.62} + \frac{92.57778}{2.7}}} = 2. 6 7 {\text{ g}}/{\text{cm}}^{ 3} $$

Table BI. Composition of the Consolidated Al 5083

Elements

Al

Mg

Mn

Fe

O

C

N

H

wt pct

bal

4.5

0.57

0.25

0.56

0.2

0.52

0.02

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Xiong, Y., Topping, T.D. et al. Spark Plasma Sintering of Cryomilled Nanocrystalline Al Alloy - Part II: Influence of Processing Conditions on Densification and Properties. Metall Mater Trans A 43, 340–350 (2012). https://doi.org/10.1007/s11661-011-0841-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0841-6

Keywords

Navigation