Skip to main content
Log in

Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) is a fairly novel powder metallurgy (PM)-based process. Compared with more traditional PM processes, SPS technology provides greater sintering efficiency for the Ti-48Al alloy, due to its fast heating and cooling rates, combined with an applied pressure and electric field during the process. In this study, three fundamental processing parameters (i.e. sintering temperature, time and particle size) are investigated, and their effects on densification, hardness and phase transformations are studied. Three grain morphologies were found in the microstructures, present in different ratios in the samples, depending on the sintering parameters. A model is proposed to explain the (α2) grain-phase growth and the transformation of two types (fine and coarse) of lamellar structural development. The pore configurations (i.e. size and quantity) are examined, and their interactions with the phases, which suggest the phase-formation sequence and sintering state, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Takasugi T (2008) Titanium aluminide-based ntermetallic alloys. Automot Eng Light Funct Nov Mater 197

  2. Noda T (1998) Application of cast gamma TiAl for automobiles. Intermetallics 6:709–713. doi:10.1016/S0966-9795(98)00060-0

    Article  Google Scholar 

  3. Lagos MA, Agote I (2013) SPS synthesis and consolidation of TiAl alloys from elemental powders: microstructure evolution. Intermetallics 36:51–56. doi:10.1016/j.intermet.2013.01.006

    Article  Google Scholar 

  4. Bartolotta P, Barrett J, Kelly T, Smashey R (1997) The use of cast Ti-48Al-2Cr-2Nb in jet engines. JOM 49:48–50. doi:10.1007/BF02914685

    Article  Google Scholar 

  5. Wang YH, Lin JP, He YH et al (2006) Reaction mechanism in high Nb containing TiAl alloy by elemental powder metallurgy. Trans Nonferrous Met Soc China Engl Ed 16:853–857. doi:10.1016/S1003-6326(06)60339-7

    Article  Google Scholar 

  6. Schloffer M, Iqbal F, Gabrisch H et al (2012) Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy. Intermetallics 22:231–240. doi:10.1016/j.intermet.2011.11.015

    Article  Google Scholar 

  7. Lee T, Kim J, Hwang S (1997) Direct consolidation of γ-TiAl-Mn-Mo from elemental powder mixtures and control of porosity through a basic study of powder reactions. Metall Mater Trans A 28:2723

    Article  Google Scholar 

  8. Wang YH, Lin JP, He YH et al (2009) Microstructural characteristics of Ti-45Al-8.5Nb/TiB2 composites by powder metallurgy. J Alloys Compd 468:505–511. doi:10.1016/j.jallcom.2008.01.057

    Article  Google Scholar 

  9. Liu K, Ma YC, Gao M et al (2005) Single step centrifugal casting TiAl automotive valves. Intermetallics 13:925–928. doi:10.1016/j.intermet.2004.12.004

    Article  Google Scholar 

  10. Jovanović MTT, Dimčić B, Bobić I et al (2005) Microstructure and mechanical properties of precision cast TiAl turbocharger wheel. J Mater Process Technol 167:14–21. doi:10.1016/j.jmatprotec.2005.03.019

    Article  Google Scholar 

  11. Chandley D (2000) Use of gamma titanium aluminide for automotive engine valves. Metall Sci Technol 18(1):8–11

    Google Scholar 

  12. Daloz D, Hecht U, Zollinger J et al (2011) Microsegregation, macrosegregation and related phase transformations in TiAl alloys. Intermetallics 19:749–756. doi:10.1016/j.intermet.2010.11.013

    Article  Google Scholar 

  13. Xiao S, Tian J, Xu L et al (2009) Microstructures and mechanical properties of TiAl alloy prepared by spark plasma sintering. Trans Nonferrous Met Soc China 19:1423–1427. doi:10.1016/S1003-6326(09)60044-3

    Article  Google Scholar 

  14. Couret A, Molénat G, Galy J, Thomas M (2008) Microstructures and mechanical properties of TiAl alloys consolidated by spark plasma sintering. Intermetallics 16:1134–1141. doi:10.1016/j.intermet.2008.06.015

    Article  Google Scholar 

  15. Guyon J, Hazotte A, Monchoux JP, Bouzy E (2013) Effect of powder state on spark plasma sintering of TiAl alloys. Intermetallics 34:94–100. doi:10.1016/j.intermet.2012.11.005

    Article  Google Scholar 

  16. Jabbar H, Monchoux J-P, Thomas M, Couret A (2011) Microstructures and deformation mechanisms of a G4 TiAl alloy produced by spark plasma sintering. Acta Mater 59:7574–7585. doi:10.1016/j.actamat.2011.09.001

    Article  Google Scholar 

  17. Suárez M, Fernández A, Menéndez J (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. Sinter Appl. doi:10.5772/53706

    Google Scholar 

  18. Saheb N, Iqbal Z, Khalil A et al (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater. doi:10.1155/2012/983470

    Google Scholar 

  19. Calderon HA, Garibay-febles V, Umemoto M, Yamaguchi M (2002) Mechanical properties of nanocrystalline Ti-Al-X alloys. Mater Sci Eng A 331:196–205

    Article  Google Scholar 

  20. Liu Y, Huang BY, He YH, Zhou KC (2000) Processing TiAl-based alloy by elemental powder metallurgy. J Mater Sci Technol 16:605–610

    Article  Google Scholar 

  21. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.1007/s10853-006-6555-2

    Article  Google Scholar 

  22. Kulkarni KN, Sun Y, Sachdev AK, Lavernia E (2013) Field-activated sintering of blended elemental γ-TiAl powder compacts: porosity analysis and growth kinetics of Al3Ti. Scr Mater 68:841–844. doi:10.1016/j.scriptamat.2013.02.004

    Article  Google Scholar 

  23. Sun ZM, Wang Q, Hashimoto H et al (2003) Synthesis and consolidation of TiAl by MA-PDS process from sponge-Ti and chip-Al. Intermetallics 11:63–69. doi:10.1016/S0966-9795(02)00183-8

    Article  Google Scholar 

  24. Rawers JC, Wrzesinski WR (1992) Reaction-sintered hot-pressed TiAl. J Mater Sci 27:2877–2886. doi:10.1007/BF01154095

    Article  Google Scholar 

  25. Chen YY, Yu HB, Zhang DL, Chai LH (2009) Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Mater Sci Eng A 525:166–173. doi:10.1016/j.msea.2009.06.056

    Article  Google Scholar 

  26. Weston NS, Derguti F, Tudball A, Jackson M (2015) Spark plasma sintering of commercial and development titanium alloy powders. J Mater Sci 50:4860–4878. doi:10.1007/s10853-015-9029-6

    Article  Google Scholar 

  27. Wen CE, Yasue K, Yamada Y (2001) Fabrication of TiAl by blended elemental powder semisolid forming. J Mater Sci 36:1741–1745. doi:10.1023/A:1017572624976

    Article  Google Scholar 

  28. Kainuma R, Palm M, Inden G (1994) Solid-phase equilibria in the Ti-rich part of the Ti-Al system. Intermetallics 2:321–332. doi:10.1016/0966-9795(94)90018-3

    Article  Google Scholar 

  29. Kim YWY (1994) Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM 46:30–39. doi:10.1007/BF03220745

    Article  Google Scholar 

  30. Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn (revised reprint). CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the technical support from Randy Cook and Greg Sweet. The financial support for this research comes from the Automotive Partnerships Canada (APC) programme (Grant No. APCPJ 411917-10), funded by the Natural Science and Engineering Research Council of Canada (NSERC). The authors would also like to thank Wescast Industries Inc. and Kingston Process Metallurgy Inc. for their financial, in-kind and technical supports. The supports of the Canada Foundation for Innovation, the Atlantic Innovation Fund, and other partners who helped in funding the Facilities for Materials Characterisation, managed by the Dalhousie University Institute for Materials Research, are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Plucknett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HW., Bishop, D.P. & Plucknett, K.P. Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering. J Mater Sci 52, 613–627 (2017). https://doi.org/10.1007/s10853-016-0358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0358-x

Keywords

Navigation