Skip to main content
Log in

Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing

  • Somaclonal Variation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The objective of this study was to obtain a genetically stable haploid in vitro-derived line from Siberian larch (Larix sibirica Ledeb.) using megagametophyte explants, which then could be used for different molecular genetic studies, including whole genome de novo sequencing. However, cytogenetic analysis and genotyping of 11 microsatellite loci showed high levels of genomic instability and a high frequency of mutation in the obtained megagametophyte-derived callus cultures. All cultures contained new mutations in one or more microsatellite loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol 11A:113–144

    Google Scholar 

  • Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817

    Article  Google Scholar 

  • Bhojwani SS, Dantu PK (2013a) Cellular totipotency. Plant tissue culture: an introductory text. Springer, New Delhi, pp 63–74

    Google Scholar 

  • Bhojwani SS, Dantu PK (2013b) Somatic embryogenesis. Plant tissue culture: an introductory text. Springer, New Delhi, pp 75–92

    Google Scholar 

  • Bhojwani SS, Dantu PK (2013c) Somaclonal variation. Plant tissue culture: an introductory text. Springer, New Delhi, pp 141–154

    Google Scholar 

  • Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Liewlaksaneeyanawin C, Funda T, Kenawy A, Newton CH, El-Kassaby YA (2009) Development and characterization of microsatellite loci in western larch (Larix occidentalis Nutt). Mol Ecol Resour 9:843–845

    Article  PubMed  CAS  Google Scholar 

  • De Klerk GJ (1990) How to measure somaclonal variation. Acta Bot Neerlandica 39:129–144

    Google Scholar 

  • Devey ME, Bell JC, Smith DN, Neale DB, Moran GF (1996) A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92:673–679

    Article  PubMed  CAS  Google Scholar 

  • Eastman P, Webster FB, Pitel JA, Roberts DR (1991) Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis. Plant Cell Rep 10:425–430

    Article  PubMed  CAS  Google Scholar 

  • Elmabrouk K, Elmeer S (2013) Factors regulating somatic embryogenesis in plants. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 56–81

    Google Scholar 

  • Endemann M, Hristoforoglu K, Stauber T, Wilhelm E (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biol Plant 44:339–345

    Article  Google Scholar 

  • Etienne H, Bertrand B (2003) Somaclonal variation in Coffea arabica: effects of genotype and embryogenic cell suspension age on frequency and phenotype of variants. Tree Physiol 23:419–426

    Article  PubMed  CAS  Google Scholar 

  • Fourre JL, Berger P, Niquet L, André P (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169

    Article  Google Scholar 

  • Gallego FJ, Martinez I, Celestino C, Toribio M (1997) Testing somaclonal variation using RAPDs in Quercus suber L. somatic embryos. Int J Plant Sci 158:563–567

    Article  CAS  Google Scholar 

  • Gao DY, Vallejo VA, He B, Gai YC, Sun LH (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tissue Organ Cult 98:187–196

    Article  CAS  Google Scholar 

  • Harvengt L, Trontin JF, Reymond I, Canlet F, Paques M (2001) Molecular evidence of true-to-type propagation of a 3-year old Norway spruce through somatic embryogenesis. Planta 213:828–832

    Article  PubMed  CAS  Google Scholar 

  • Heinze B, Schmidt J (1995) Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85:341–345

    Article  CAS  Google Scholar 

  • Helmersson A, Jansson G, Bozhkov PV, von Arnold S (2008) Genetic variation in microsatellite stability of somatic embryo plants of Picea abies: a case study using six unrelated full-sib families. Scand J For Res 23:2–11

  • Helmersson A, von Arnold S, Burg K, Bozhkov PV (2004) High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce. Tree Physiol 24:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Hornero J, Martinez I, Celestino C, Gallego FJ, Torres V, Toribio M (2001) Early checking of genetic stability of cork oak somatic embryos by AFLP analysis. Int J Plant Sci 162:827–833

    Article  CAS  Google Scholar 

  • Isolda K, Watanabe A (2006) Isolation and characterization of microsatellite loci from Larix kaempferi. Mol Ecol 6:664–666

    Article  Google Scholar 

  • Ivanova AN, Tret’yakova IN, Vyazovetskova AS (2006) Induction of androgenic cultures in Siberian larch. Russ J Dev Biol 37:27–36

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  PubMed  CAS  Google Scholar 

  • Khasa DP, Jaramillo-Correa JP, Jaquish B, Bousquet J (2006) Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Mol Ecol 15:3907–3918

  • Khasa DP, Newton CH, Rahman MH, Jaquish B, Dancik BP (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43:439–448

    Article  PubMed  CAS  Google Scholar 

  • Kiselev KV, Dubrovina AS, Shumakova OA (2013) DNA mutagenesis in 2- and 20-yr-old Panax ginseng cell cultures. In Vitro Cell Dev Biol Plant 49:175–182

    Article  CAS  Google Scholar 

  • Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, Lelu-Walter MA (2009) Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait). In Vitro Cell Dev Biol Plant 45:20–33

    Article  Google Scholar 

  • Krutovsky KV, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV, Vaganov EA (2012a) The Siberian larch complete de novo genome sequencing project at the Siberian Federal University Genome Research Center. In: Proceedings of the 2nd International Conference “Plant Genetics, Genomics, and Biotechnology”. July 30–August 3, Irkutsk, Russia, p 41. http://confnscru/files/conferences/plantgen2012/136010/eAbstractBook%20PlantGen2012pdf. Cited 12 Dec 2013

  • Krutovsky KV, Tretyakova IN, Chubugina IV, Oreshkova NV, Echt CS, Islam-Faridi N, Nelson CD (2012c) “Shrinking” the giants: an innovative approach for de novo sequencing of conifer genomes. In: Plant & animal genome XX. The International Conference on the Status of Plant and Animal Genome Research, final program and abstracts guide, W287. January 14–18, 2012 San Diego, CA, USA, p 153. http://pagconfexcom/pag/xx/webprogram/Paper2763html. Cited 12 December 2013

  • Krutovsky KV, Vaganov EA, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV (2012b) Complex genome sequencing: preliminary data of Siberian larch complete genome de novo sequencing. In: Microsymposium I: computational and experimental genomics. Proceedings of the 8th International Conference on the Bioinformatics of Genome Regulation and Structure\Systems Biology, June 25–29, 2012, Novosibirsk, Russia, p 53. Available at http://confnscru/files/conferences/BGRSSB2012/130321/Program_BGRS_SB_24_06_12pdf. Cited 12 December 2013

  • Kunakh VA (1999) Variation of the plant genome upon dedifferentiation and callus formation in vitro. Russ J Plant Physiol 46:919–929

    Google Scholar 

  • Landey RB, Cenci A, Georget F, Bertrand B, Camayo G, Dechamp E, Herrera JC, Santoni S, Lashermes P, Simpson J, Etienne H (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS ONE 8:e56372

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  PubMed  CAS  Google Scholar 

  • Lelu MA (1987) Variations morphologiques et génétiques chez Picea abies obtenues après embryogenèse somatique. Annales de Recherches Sylvicoles. Association Forêt-Cellulose, Paris, pp 35–47 (in French)

    Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes. doi:10.1007/s11295-013-0620-1

    Google Scholar 

  • Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira M, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  PubMed  CAS  Google Scholar 

  • Mazia D (1961) Mitosis and the physiology of cell division. In: Brachet J, Mirsky A (eds) The cell: biochemistry, physiology, morphology, vol 3. Academic, New York, pp 77–412

    Chapter  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  PubMed  CAS  Google Scholar 

  • Mo LM, von Arnold S, Lagercrantz U (1989) Morphogenic and genetic stability in long term embryogenic cultures and somatic embryos of Norway spruce (Picea abies [L] Karst). Plant Cell Rep 8:375–378

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagmani R, Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can J For Res 15:1088–1091

    Article  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  PubMed  CAS  Google Scholar 

  • Nkongolo KK, Klimaszewska K (1995) Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix x eurolepis: identification of species-specific chromosomes and synchronization of mitotic cell. Theor Appl Genet 90:827–834

    Article  PubMed  CAS  Google Scholar 

  • Nosov AM (2012) Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624

    Article  CAS  Google Scholar 

  • O’Brien EW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99

    Article  Google Scholar 

  • Orzechowska M, Stępień K, Kamińska T, Siwińska D (2013) Chromosome variations in regenerants of Arabidopsis thaliana derived from 2- and 6-week-old callus detected using flow cytometry and FISH analyses. Plant Cell Tissue Organ Cult 112:263–273

    Article  CAS  Google Scholar 

  • Park SY (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Article  Google Scholar 

  • Park SY, Klimaszewska K, Park JY, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Patel KR, Berlyn GP (1982) Genetic instability of multiple buds of Pinus coulteri regenerated from tissue culture. Can J For Res 12:93–101

    Article  Google Scholar 

  • Pattanavibool R, von Aderkas P, Hanhijärvi A, Simola LK, Bonga JM (1995) Diploidization in megagametophyte-derived cultures of the gymnosperm Larix decidua. Theor Appl Genet 90:671–674

    Article  PubMed  CAS  Google Scholar 

  • Plader W, Malepszy S, Burza W, Rusinowski Z (1998) The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103:9–15

    Article  Google Scholar 

  • Prado M, Rodriguez E, Rey L, Gonzalez M, Santos C, Rey M (2010) Detection of somaclonal variants in somatic embryogenesis-regenerated plants of Vitis vinifera by flow cytometry and microsatellite markers. Plant Cell Tissue Organ Cult 103:49–59

    Article  Google Scholar 

  • Rahman M, Rajora O (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536

    Article  CAS  Google Scholar 

  • Rohit J, Paramod K (2013) Regulation of somatic embryogenesis in crops: a review. Agric Rev 34:1–20

    Google Scholar 

  • Ryu TH, Yi SI, Kwon YS, Kim BD (2007) Microsatellite DNA somaclonal variation of regenerated plants via cotyledon culture of hot pepper (Capsicum annuum L). Korean J Genet 29:459–464

    CAS  Google Scholar 

  • Salajova T, Salaj J (1992) Somatic embryogenesis in European black pine (Pinus nigra Arn.). Biol Plant 4:213–218

    Article  Google Scholar 

  • Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35

    Article  CAS  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. In: Zimmerman W, Carlquist Z, Ozenda P, Wulff HD (eds) Handbuch der Pflanzenanatomie. Gebrüder Borntraeger, Berlin, pp 187–241

    Google Scholar 

  • Smith R (2012) Plant tissue culture: techniques and experiments, 3rd ed. Elsevier, Academic Press. 208 pp

  • Swarnkar PL, Bohra SP, Chandra N (1986) Biochemical changes during growth and differentiation of the callus of Solanum surattense. J Plant Physiol 126:75–81

    Article  CAS  Google Scholar 

  • Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am J Bot 86:1373–1381

    Article  PubMed  CAS  Google Scholar 

  • Tret’yakova IN, Barsukova AV (2012) Somatic embryogenesis in in vitro culture of three larch species. Russ J Dev Biol 43:353–361

    Article  Google Scholar 

  • Tret’yakova IN, Ivanitskaya AC, Ivanova AN, Barsukova AV (2009) Phytohormone content in microstrobiles and androgenic callus of Siberian larch. Russ J Plant Physiol 56:647–653

  • Tret’yakova IN, Novoselova NV (2003) Specific features of development of megagametophytes and embryos of the Siberian stone pine in vitro. Russ J Dev Biol 34:232–240

    Article  Google Scholar 

  • Tretyakova IN, Voroshilova EV (2014) Somatic embryogenesis induction in Siberian pine megagametophytes. Russ For Sci 1:50–55

    Google Scholar 

  • Tretyakova IN, Vyasovetskova AS, Ivanova AN (2006) Induction of androgenic cultures of Siberian larch (Larix sibirica Ledeb). Eurasian J For Res 9:37–44

    Google Scholar 

  • Tulecke W (1987) Somatic embryogenesis in woody perennials. In: Bonga JM, Durzan DJ (eds). Cell Tissue Cult For 2:61–91

    Google Scholar 

  • von Aderkas P, Anderson P (1993) Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua. Physiol Plant 88:73–77

    Article  Google Scholar 

  • von Aderkas P, Bonga JM (1988) Formation of haploid embryoids of Larix decidua: early embryogenesis. Am J Bot 75:690–700

    Article  Google Scholar 

  • von Aderkas P, Klimaszewska K, Bonga JM (1990) Haploid and diploid embryogenesis in Larix leptolepis, L. decidua and their reciprocal hybrids. Can J For Res 20:9–14

    Article  Google Scholar 

  • von Aderkas P, Pattanavibool R, Hristoforoglu K, Ma Y (2003) Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch. Plant Cell Tissue Organ Cult 74:27–34

    Article  Google Scholar 

  • Wernicke W, Milkovits L (1986) The regeneration potential of wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid. Protoplasma 131:131–141

    Article  CAS  Google Scholar 

  • Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Wang H, Dong Z, Qi B, Xu K, Liu B (2010) Tissue culture-induced variation at simple sequence repeats in sorghum (Sorghum bicolor L.) is genotype-dependent and associated with down-regulated expression of a mismatch repair gene, MLH3. Plant Cell Rep 29:51–59

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Grant No. 14.Y26.31.0004 from the Government of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Krutovsky.

Additional information

Editor: John Forster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutovsky, K.V., Tretyakova, I.N., Oreshkova, N.V. et al. Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing. In Vitro Cell.Dev.Biol.-Plant 50, 655–664 (2014). https://doi.org/10.1007/s11627-014-9619-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-014-9619-z

Keywords

Navigation