Skip to main content

Advertisement

Log in

In vitro chili pepper biotechnology

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham-Juárez, M. R. “Transformación genética de chile (Capsicum annuum. L.) con genes de quitinasa y β-1,3-glucanasa para la protección contra enfermedades causadas por hongos. Tesis de licenciatura. Instituto de Ciencias Agrícolas, Universidad de Guanajuato, México; 1999.

    Google Scholar 

  • Agrawal, S.; Chandra, N. Differentiation of multiple shoot buds and plantlets in cultured embryos of Capsicum annuum L. var. Mathania. Curr. Sci. 52:645–646; 1983.

    Google Scholar 

  • Agrawal, S.; Chandra, N.; Kothari, S. L. Plant regeneration in tissue cultures of pepper (Capsicum annuum L. cv. Mathania), Plant Cell Tiss. Organ Cult. 16:47–55; 1989.

    Google Scholar 

  • Alibert, O. Essais de regeneration par organogenes e chez le piment (Capsicum annuum L.). Memoire pour l'obtention du D.E.S.S. de Productivité Végétale Université Paris. Station d'Amélioration des Plantes, Maraîchères-INRA 84141 Montfavet; 1990:37 pp.

  • Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a 3-oxoacyl-[Acyl-Carrier-Protein] synthase (3-ketoacyl-ACP synthase) gene (Accession No AF085148) from habanero chile. Plant Gene Register PGR98-181. Plant Physiol. 118:1102; 1998a.

    Google Scholar 

  • Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a probable aminotransferase gene (Accession No AF085149) from habanero chile. Plant Gene Register PGR98-170. Plant Physiol. 118:1102; 1998b.

    Google Scholar 

  • Aluru, M.; Curry, J.; O'Connell, M. A. Nucleotide sequence of a defensin or gamma-thionin-like gene (Accession No AF128239) from habanero chile. Plant Gene Register PGR99-070. Plant Physiol. 120:633; 1999.

    Google Scholar 

  • Andrews, J. Peppers: the domesticated Capsicums. new edn. Austin: University of Texas Press; 1995:186 pp.

    Google Scholar 

  • Arroyo, R.; Revilla, M. A. In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep. 10:414–416; 1991.

    CAS  Google Scholar 

  • Berljak, J. In vitro plant regeneration from pepper (Capsicum annuum L. cv. Soroksari) seedling explants. Phyton (Austria) 39:289–292; 1999.

    Google Scholar 

  • Binzel, M. L.; Sankhla, N.; Joshi, S.; Sankhla, D. Induction of direct embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Rep. 15:536–540; 1996a.

    CAS  Google Scholar 

  • Binzel, M. L.; Sankhla, N.; Joshi, S.; sankhla, D. In vitro regeneration in chile pepper (Capsicum annuum L.) from ‘half-seed-explants’. Plant Growth Reg. 20:287–293; 1996b.

    CAS  Google Scholar 

  • Brooks, C. J. W.; Watson, D. G.; Freer, I. M. Elicitation of capsidiol accumulation in suspended callus cultures of Capsicum annuum. Phytochemistry 25:1089–1092; 1986.

    CAS  Google Scholar 

  • Buyukalaca, S.; Mavituna, F. Somatic embryogenesis and plant regeneration of pepper in liquid media. Plant Cell Tiss. Organ Cult. 46:227–235; 1996.

    CAS  Google Scholar 

  • Campos, F. F.; Morgan, D. T., Jr. Haploid pepper from a sperm: an androgenic haploid of Capsicum frutescens. J. Hered. 49:134–137; 1958.

    Google Scholar 

  • Christensen, H. M.; Bamford, R. Haploids in twin seedlings of pepper (Capsicum annuum L.). J. Hered. 34:99–104; 1943.

    Google Scholar 

  • Christopher, T.; Rajam, M. V. In vitro clonal propagation of Capsicum spp. Plant Cell Tiss. Organ Cult. 38:25–29; 1994.

    Google Scholar 

  • Christopher, T.; Rajam, M. V. Effect of genotype, explant and medium on in vitro regeneration of red pepper. Plant Cell Tiss. Organ Cult. 46:245–250; 1996.

    CAS  Google Scholar 

  • Curry, J.; Aluru, M.; Mendoza, M.; Nevarez, J.; Melendrez, M.; O'Connell, M.A. Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci. 148:47–57; 1999.

    CAS  Google Scholar 

  • Curry, J.; Mendoza, M.; O'Connell, M. A. Nucleotide sequence of a caffeic acid 3-O-methyltransferase gene (Accession No AF081214) from habanero chile. Plant Gene Register PGR98-170. Plant Physiol. 118:711; 1998.

    Google Scholar 

  • Deruère, J.; Bouvier, F.; Steppuhn, J.; Klein, A.; Camara, B.; Kuntz, M. Structure and expression of two plant genes encoding chromoplastspecific proteins: occurrence of partially spliced transcripts. Biochem. Biophys. Res. Commun. 199:1144–1150; 1994a.

    PubMed  Google Scholar 

  • Deruère, J.; Römer, S.; d'Harlingue, A.; Backhaus, R. A.; Kuntz, M.; Camara, B. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133; 1994b.

    PubMed  Google Scholar 

  • DeWitt, D.; Bosland, P. W. The pepper garden. Berkeley, CA: Ten Speed Press; 1993:240 pp.

    Google Scholar 

  • Díaz, I.; Moreno, R.; Power, J. B. Plant regeneration from protoplasts of Capsicum annuum. Plant Cell Rep. 7:210–212; 1988.

    Google Scholar 

  • Dix, P. J.; Street, H. E. Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annuum. Plant Sci. Lett. 5:231–237; 1975.

    Google Scholar 

  • Dix, P. J.; Street, H. E. Selection of plant cell lines with enhanced chilling resistance. Ann bot. 40:903–910; 1976.

    Google Scholar 

  • Dumas de Vaulx, R.; Chambonnet, D.; Pochard, E. Culture in vitro d'anthères de piment (Capsicum annuum): amélioration des taux d'obtention de plantes chez différents génotypes par traitments a +35°C. Agronomie 1:859–864; 1981.

    Google Scholar 

  • Dumas de Vaulx, R.; Chambonnet, D.; Sibi, M. Stimulation of in vitro androgenesis in pepper (Capsicum annuum) by elevated temperature treatments. In: Earle, D.; Demarly, Y., eds. Variability in plants regenerated from tissue culture. New York: Praeger Publishers; 1982:92–98.

    Google Scholar 

  • Durand, J. High and reproducible plating efficiencies of protoplasts isolated from in vitro grown haploid Nicotiana sylvestris. Z. Pflanzenphysiol. 93:283–295; 1979.

    Google Scholar 

  • Ebida, A. I. A.; Hu, C.-Y. In vitro morphogenetic responses and plant regeneration from pepper (Capsicum annuum L. cv. Early California Wonder) seedling explants. Plant Cell Rep. 13:107–110; 1993.

    CAS  Google Scholar 

  • Engler, D. E.; Guri, A. Z.; Lauritis, J. A.; Schloemer, L. M. P. Genetically transformed pepper plants and methods for their production. USA Patent 5,262,316; 1993.

  • Ezura, H. Micropropagation of Capsicum species (pepper). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 39. Berlin, Heidelberg; Springer-Verlag; 1997:48–59.

    Google Scholar 

  • Ezura, H.; Nishimiya, S.; Kasumi, M. Efficient regeneration of plants independent of exogenous growth regulators in bell pepper (Capsicum annuum L.). Plant Cell Rep. 12:676–680; 1993.

    Google Scholar 

  • FAO. FAOSTAT Database results; 1998.

  • Fári, M. Pepper (Capsicum annuum L.). In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 2. Berlin, Heidelberg: Springer-Verlag; 1986:345–362.

    Google Scholar 

  • Fári, M.; Czakó, M. Relationship between position and morphogenetic response of pepper hypocotyl explants cultured in vitro. Sci. Hort. 15:207–213; 1981.

    Google Scholar 

  • Fári, M.; Szász, A.; Mitykó, J.; Nagy, I.; Csányi, M.; Andrásfalvy, A. Induced organogenesis via seedling decapitation method(SDM) in three solanaceous vegetable species. VIIIth Eucarpia Meeting Genetics and Breeding of Capsicum and Eggplant, Rome, 7–10 September; 1992:243–248.

  • Fontes, M. A.; Otoni, W. C.; Carolino, S. M. B.; Brommonschenkel, S. H.; Fontes, E. P. B.; Fári, M.; Louro, R. P. Hyperhydricity in pepper plants regnerated in vitro: involvement of BiP (Binding Protein) and ultrastructural aspects. Plant Cell Rep. 19:81–87; 1999.

    CAS  Google Scholar 

  • Franck-Duchenne, M.; Wang, Y.; Ben Tahar, S.; Beachy, R. N. In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell Tiss. Organ Cult. 53:79–84; 1998.

    CAS  Google Scholar 

  • Fujiwake, H.; Suzuki, T.; Iwai, K. Capsaicinoid formation in the protoplast from the placenta of Capsicum fruits. Agric. Biol. Chem. 46:2591–2592; 1982.

    CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    PubMed  CAS  Google Scholar 

  • García-Pérez, M. D.; Egea, C.; Candela, M. E. Defence response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiol. Plant. 103:527–533; 1998.

    Google Scholar 

  • Gémesné, J. A.; Sági, Zs.; Salamon, P.; Somogyi, N.; Zatykó, L., Venczel, G. Experiences and results of in vitro haploid methods application in pepper breeding programme. Xth Meeting on Genetics and Breeding of Capsicum and Eggplant, Avignon, 7–11 September; 1998:201–205.

  • George, L.; Narayanaswamy, S. Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470; 1973.

    Google Scholar 

  • González-Melendi, P.; Testillano, P. S.; Ahmadian, P.; Fadón, B.; Risueño, M. C. New in situ approaches to study the induction of pollen embryogenesis in Capsicum annuum L. Eur. J. Cell Biol. 69:373–386; 1996.

    PubMed  Google Scholar 

  • Govindarajan, V. S. Capsicum—production, technology, chemistry and quality. III. Chemistry of the color, aroma, and pungency stimuli. Crit. Rev. Food Sci. Nutr. 24:245–355; 1986.

    PubMed  CAS  Google Scholar 

  • Govindarajan, V. S.; Sathyanarayana, M. N. Capsicum—production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Crit. Rev. Food Sci. Nutr. 29:435–474; 1991.

    PubMed  CAS  Google Scholar 

  • Greenleaf, W. H. Pepper breeding. In: Bassett, M. J., ed. Breeding vegetable crops. Westport, CT: AVI Publishing; 1986:67–134.

    Google Scholar 

  • Gunay, A. L.; Rao, P. S. In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Sci. Lett. 11:365–372; 1978.

    CAS  Google Scholar 

  • Gyulai, G.; Gémesné, J. A.; Sági, Zs.; Venczel, G.; Pintér, P.; Kristóf, Z.; Törjék, O.; Heszky, L.; Bottka, S.; Kiss, J.; Zatykó, L. Doubled haploid development and PCR-analysis of F1 hybrid derived DH-R2 paprika (Capsicum annuum L.) lines. J. Plant Physiol. 156:168–174; 2000.

    CAS  Google Scholar 

  • Hall, R. D.; Holden, M. A.; Yeoman, M. M. The accumulation of phenylpropanoid and capsaicin compounds in cell cultures and whole fruit of the chilli pepper, Capsicum frutescens Mill. Plant Cell Tiss. Organ Cult. 8:163–176; 1987.

    CAS  Google Scholar 

  • Hall, R. D.; Yeoman, M. M. The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of chilli pepper, Capsicum frutescens. Planta 185:72–80; 1991.

    CAS  Google Scholar 

  • Harini, I.; Lakshmi Sita, G. Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.). Plant Sci. 89:107–112; 1993.

    Google Scholar 

  • Holden, M. A.; Hall, R. D.; Lindsey, K.; Yeoman, M. M. Capsaicin biosynthesis in cell cultures of Capsicum frutescens. In: Webb, C.; Mavituna, F., eds. Plant and animal cells: process possibilities. Chichester: Horwood Ltd.; 1987:45–62.

    Google Scholar 

  • Holden, P. R.; Yeoman, M. M. Variation in the growth and biosynthetic activity of cloned cell cultures of Capsicum frutescens and their response to an exogenously supplied elicitor. Plant Cell Tiss. Organ Cult. 38:31–37; 1994.

    CAS  Google Scholar 

  • Hoshino, T.; Chida, M.; Yamaura, T.; Yoshizawa, Y.; Mizutani, J. Phytoalexin induction in green pepper cell cultures treated with arachidonic acid. Phytochemistry 36:1417–1419; 1994.

    CAS  Google Scholar 

  • Houlné, G.; Meyer, B.; Schantz, R. Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.). Mol. Gen. Genet. 259:504–510; 1998.

    PubMed  Google Scholar 

  • Husain, S.; Jain, A.; Kothari, S. L. Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant. Cell Rep. 19:64–68; 1999.

    CAS  Google Scholar 

  • Hyde, C.; Phillips, G. C. Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev. Biol. Plant 32:72–80; 1996.

    CAS  Google Scholar 

  • Jayashankar, S. Comparison of different in vitro regeneration and genetic transformation strategies for chile pepper (Capsicum annuum). Ph.D. dissertation, New Mexico State University, Las Cruces: 1998.

    Google Scholar 

  • Jayashankar, S.; Bagga, S.; Phillips, G. C. Sweet pepper (Capsicum annuum) transformation using Agrobacterium rhizogenes. HortScience 32:454 (abstr.); 1997.

    Google Scholar 

  • Kao, K. N.; Michayluk, M. R. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at very low population density in liquid media. Planta 126:105–110; 1975.

    CAS  Google Scholar 

  • Kim, S. J.; Lee, S. J.; Kim, B.-D.; Paek, K.-H. Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep. 16:825–830; 1997.

    CAS  Google Scholar 

  • Kristiansen, K.; Andersen, S. B. Effects of donor plant temperature, photoperiod, and age on anther culture response of Capsicum annuum L. Euphytica 67:105–109; 1993.

    Google Scholar 

  • Kuntz, M.; Chen, H. C.; Simkin, A. J.; Römer, S.; Shipton, C. A.; Drake, R.; Schuch, W.; Bramley, P. M. Upregulation of two ripening-related genes from a non-climacteric plant (pepper) in a transgenic climacteric plant (tomato). Plant J. 13:351–361; 1998.

    CAS  Google Scholar 

  • Kuo, J.-S.; Wang, Y.-Y.; Chien, N.-F.; Ku, S.-J.; Kung, M.-L.; Hsu, H.-C. Investigation on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Bot. Sinica 15:43–47; 1973.

    Google Scholar 

  • Lee, S. J.; Kim, B.-D.; Paek, K.-H. In vitro plant regeneration and Agrobacterium-mediated transformation from cotyledon explants of hot pepper (Capsicum annuum cv. Golden Tower). Korean J. Plant Tiss. Cult. 20:289–294; 1993.

    CAS  Google Scholar 

  • Lefebvre, V.; Palloix, A.; Caranta, C.; Pochard, E. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121; 1995.

    CAS  Google Scholar 

  • Lindsey, K. Manipulation, by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. cv. annuum. Planta 165:126–133; 1985.

    CAS  Google Scholar 

  • Lindsey, K. Incorporation of [14C]phenylalanine and [14C]cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. Phytochemistry 25:2793–2801; 1986.

    CAS  Google Scholar 

  • Lindsey, K.; Yeoman, M. M. The viability and biosynthetic activity of cells of Capsicum frutescens Mill. cv. annuum immobilised in reticulate polyurethane. J. Exp. Bot. 35:1684–1696; 1984a.

    CAS  Google Scholar 

  • Lindsey, K.; Yeoman, M. M. The synthetic potential of immobilised cells of Capsicum frutescens Mill. cv. annuum. Planta 162:495–501; 1984b.

    CAS  Google Scholar 

  • Lindsey, K.; Yeoman, M. M.; Black, G. M.; Mavituna, F. A novel method for the immobilisation and culture of plant cells. FEBS Lett. 155:143–149; 1983.

    CAS  Google Scholar 

  • Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100–127; 1965.

    CAS  Google Scholar 

  • Liu, W.; Parrott, W. A.; Hildebrand, D. F.; Collins, G. B.; Williams, E. G. Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep. 9:360–364; 1990.

    CAS  Google Scholar 

  • Madhuri, V.; Rajam, M. V. Apical shoot meristem culture in red pepper (Capsicum annuum L.). J. Plant Biochem. Biotechnol. 2:67–68; 1993.

    Google Scholar 

  • Maga, J. A. Capsicum. Crit. Rev. Food Sci. Nutr. 6:177–199; 1975.

    CAS  Google Scholar 

  • Manoharan, M.; Sree Vidya, C. S.; Lakshmi Sita, G. Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuuum L. var. Pusa jwala). Plant Sci. 131:77–83; 1998.

    CAS  Google Scholar 

  • Mavituna, F.; Park, J. M. Growth of immobilised plant cells in reticulate polyurethane foam matrices. Biotechnol. Lett. 7:637–640; 1985.

    CAS  Google Scholar 

  • Mavituna, F.; Park, J. M.; Wilkinson, A. K.; Williams, P. D. Characteristics of immobilised plant cell reactors. In: Webb, C.; Mavituna, F., eds. Plant and animal cells: process possibilities. Chichester: Horwood Ltd.; 1987:92–115.

    Google Scholar 

  • Meyer, B.; Houlné, G.; Pozueta-Romero, J.; Schantz, M.-L.; Schantz, R. Fruit-specific expression of a defensin-type gene family in bell pepper. Plant. Physiol. 115:1185–1194; 1997.

    Google Scholar 

  • Mitykó, J.; Andrásfalvy, A.; Csilléry, G.; Fári, M. Anther-culture response in different genotypes and F1 hybrids of pepper (Capsicum annuum L.). Plant Breed. 114:78–80; 1995.

    Google Scholar 

  • Morrison, R. A.; Koning, R. E.; Evans, D. A. Pepper. In: Evans, D. A.; Sharp, W. R.; Ammirato, P. V., eds Handbook of plant cell culture, vol. 4. New York: Macmillan; 1986a:552–573.

    Google Scholar 

  • Morrison, R. A.; Koning, R. E.; Evans, D. A. Anther culture of an interspecific hybrid of Capsicum. J. Plant Physiol. 126:1–9; 1986b.

    Google Scholar 

  • Munyon, I. P.; Hubstenberger, J. F.; Phillips, G. C. Origin of plantlets and callus obtained from chile pepper anther cultures. In Vitro Cell. Dev. Biol. 25:293–296; 1989.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    CAS  Google Scholar 

  • Murphy, J. F.; Kyle, M. M. Isolation and viral infection of Capsicum leaf protoplasts. Plant Cell Rep. 13:397–400; 1994.

    CAS  Google Scholar 

  • Nagata, T.; Takebe, I. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta 99:12–20; 1971.

    Google Scholar 

  • Nielsen, T. H.; Ulvskov, P. Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). II. Sink metabolism in relation to cytokinin-promoted leaf expansion. Planta 188:78–84; 1992.

    CAS  Google Scholar 

  • Nitsch, J. P. Experimental androgenesis in Nicotiana. Phytomorphology 19:389–404; 1969.

    Google Scholar 

  • Novák, F. J. Induction of a haploid callus in anther cultures of Capsicum sp. Z. Pflanzenzüchtg. 72:46–54; 1974.

    Google Scholar 

  • Ochoa-Alejo, N.; García-Bautista, M. A. R. Morphogenetic responses in vitro of hypocotyl tissues of chili pepper (Capsicum annuum L.) to growth regulators. Turrialba 40:311–318; 1990.

    CAS  Google Scholar 

  • Ochoa-Alejo, N.; Gómez-Peralta, J. E. Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J. Plant Physiol. 141:147–152; 1993.

    CAS  Google Scholar 

  • Ochoa-Alejo, N.; Ireta-Moreno, L. Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Sci. Hort. 42:21–28; 1990.

    Google Scholar 

  • Ochoa-Alejo, N.; Salgado-Garciglia, R. Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and-sensitive variant cells of chili pepper (Capsicum annuum). Physiol. Plant. 85:173–179; 1992.

    CAS  Google Scholar 

  • Phillips, G. C.; Collins, G. B. In vitro culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci. 19:59–64; 1979.

    Google Scholar 

  • Phillips, G. C.; Hubstenberger, J. F. Organogenesis in pepper tissue cultures. Plant Cell Tiss. Organ Cult. 4:261–269; 1985.

    CAS  Google Scholar 

  • Phillips, G. C.; Valera-Montero, L. L.; Fan, Z.; Jayashankar, S.; Hubstenberger, J. F.; Watkins, D. D. Chile improvement through biotechnology: in vitro plant regeneration and genetic transformation. New Mexico Chile Pepper Insitute, Chile Conference 2000 (Poster), Las Cruces, NM; February 8; 2000.

  • Pickering, R. A.; Devaux, P. Haploid production: approaches and use in plant breeding. In: Shewry, P. R., ed. Barley: genetics, biochemistry, molecular biology and biotechnology. Oxford: Alden Press; 1992:519–547.

    Google Scholar 

  • Pochard, E.; Dumas de Vaulx, R. Haploid parthenogenesis in Capsicum annuum L.. In: Hawkes, J. G.; Lester, R. N.; Skelding, A. D., eds. The biology and taxonomy of the Solanaceae. London: Academic Press; 1979:455–472.

    Google Scholar 

  • Power, J. B.; Chapman, J. V. Isolation, culture and genetic manipulation of plant protoplasts. In: Dixon, R. A., ed. Plant cell culture. Oxford, Washington DC: IRL Press; 1985;37–66.

    Google Scholar 

  • Prakash, A. H.; Sankara Rao, K.; Udaya Kumar, M. Plant regeneration from protoplasts of Capsicum annuum L. cv. California Wonder. J. Biosci. 22:339–344; 1997.

    CAS  Google Scholar 

  • Quintero-Higuera, M. F.; Santos-Díaz, M. S.; García-de la Cruz, R. F. Cell wall proteins of in vitro cultured chili pepper lines differing in water stress tolerance. Plant Sci. 128:217–223; 1997.

    CAS  Google Scholar 

  • Ramachandra Rao, S.; Ravishankar, G. A. Biotransformation of isoeugenol to vanilla flavour metabolites and capsaicin in suspended and immobilized cell cultures of Capsicum frutescens: study of the influence of β-cyclodextrin and fungal elicitor. Process Biochem. 35:341–348; 1999.

    Google Scholar 

  • Ramachandra Rao, S.; Ravishankar, G. A. Biotransformation of proto-catechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. J. Biotechnol. 76:137–146; 2000.

    Google Scholar 

  • Ramage, C. M.; Leung, D. W. M. Influence of BA and sucrose on the competence and determination of pepper (Capsicum annuum L. var. Sweeet Banana) hypocotyl cultures during shoot formation. Plant Cell Rep. 15:974–979; 1996.

    CAS  Google Scholar 

  • Ramírez-Malagón, R. Estudios de regeneración de plantas in vitro y de transformación genética de chile (Capsicum annuum L.). Ph.D. thesis, CINVESTAV-Unidad Irapuato, México: 1997.

    Google Scholar 

  • Ramírez-Malagón, R.; Ochoa-Alejo, N. An improved and reliable chili pepper (Capsicum annuum L.) plant regeneration method. Plant Cell Rep. 16:226–231; 1996.

    Google Scholar 

  • Rao, A. V.; Ashfaq Farooqui, M.; Sadanandam, A. Induction of lincomycin and streptomycin resistance by nitrosomethylurea and ethyl methanesulphonate in Capsicum annuum L.. Plant Cell Rep. 16:865–868; 1997.

    CAS  Google Scholar 

  • Ravishankar, G. A.; Sarma, K. S.; Venkataraman, L. V.; Kadyan, A. K. Effect of nutritional stress on capsaicin production in immobilized cell cultures of Capsicum annuum. Curr. Sci. 57:381–383; 1988.

    CAS  Google Scholar 

  • Saccardo, F.; Devreux, M. In vitro production of plantlets from anther culture of Capsicum annuum. Proc. Eucarpia: Genetics and Breeding of Capsicum. Budapest; 1974:45–49.

  • Salgado-Garciglia, R.; Ochoa-Alejo, N. Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep. 8:617–620; 1990.

    CAS  Google Scholar 

  • Santos-Díaz, M. S.; Ochoa-Alejo, N. PEG-tolerant cell clones of chili pepper: growth, osmotic potentials and solute accumulation. Plant Cell Tiss. Organ Cult. 37:1–8; 1994a.

    Google Scholar 

  • Santos-Díaz, M. S.; Ochoa-Alejo, N. Effect of water stress on growth, osmotic potential and solute accumulation in cell cultures from chili pepper (a mesophyte) and creosote bush (a xerophyte). Plant Sci. 96:21–29; 1994b.

    Google Scholar 

  • Saxena, P. K.; Gill, R.; Maheshwari, S. C. Isolation and culture of protoplasts of Capsicum annuum L. and their regeneration into plants flowering in vitro. Protoplasma 108:357–360; 1981.

    Google Scholar 

  • Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:166–204; 1972.

    Google Scholar 

  • Shahin, E. A. Totipotency of tomato protoplasts. Theor. Appl. Genet. 69:235–240; 1985.

    CAS  Google Scholar 

  • Sibi, M.; Dumas de Vaulx, R.; Chambonnet, D. Obtention de plantes haploïdes par androgenèse in vitro chez le piment (Capsicum annuum L.). Ann. Amélior. Plantes 29:583–606; 1979.

    Google Scholar 

  • Sripichit, P.; Nawata, E.; Shigenaga, S. In vitro shoot-forming capacity of cotyledon explants in red pepper (Capsicum annuum L. cv. Yatsufusa). Jap. J. Breed. 37:133–142; 1987.

    Google Scholar 

  • Sripichit, P.; Nawata, E.; Shigenaga, S. The effects of exposure dose and dose rate of gamma radiation on in vitro shoot-forming capacity of cotyledon explants of red pepper (Capsicum annuum L. cv. Yatsufusa). Jap. J. Breed. 38:27–34; 1988a.

    Google Scholar 

  • Sripichit, P.; Nawata, E.; Shigenaga, S. Radiation-induced mutation by using in vitro adventitious bud technique in red pepper (Capsicum annuum L. cv. Yatsufusa)—analysis of the variant appeared in M1 generation. Jap. J. Breed. 38:141–150; 1988b.

    Google Scholar 

  • Subhash, K.; Venkataiah, P.; Bhaskar, P. Induction of streptomycin-resistant plantlets in Capsicum annuum L. through mutagenesis in vitro. Plant Cell Rep. 16:111–113; 1996.

    CAS  Google Scholar 

  • Sudhakar Johnson, T.; Ravishankar, G. A.; Dhanaraj, S. Pungency threshold of capsaicin produced by in vitro culture of placental tissues of Capsicum frutescens. Mill. Food Biotechnol. 9:167–173; 1995.

    Google Scholar 

  • Sudhakar Johnson, T.; Ravishankar, G. A.; Venkataraman, L. V. In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci. 70:223–229; 1990.

    Google Scholar 

  • Sudhakar Johnson, T.; Ravishankar, G. A.; Venkataraman, L. V. Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. Plant Cell. Tiss. Organ Cult. 44:117–121; 1996.

    Google Scholar 

  • Suzuki, T.; Kawada, T.; Iwai, K. Biosynthesis of acyl moieties of capsaicin and its analogues from valine and leucine in Capsicum fruits. Plant Cell. Physiol. 22:23–32; 1981.

    CAS  Google Scholar 

  • Szász, A.; Nervo, G.; Fári, M. Screening for in vitro shoot-forming capacity of seedling explants in bell pepper (Capsicum annuum L.) genotypes and efficient regeneration using thidiazuron. Plant Cell Rep. 14:666–669; 1995.

    Google Scholar 

  • Tisserat, B.; Galletta, P. D. In vitro flowering and fruiting of Capsicum frutescens L. HortScience 30:130–132; 1995.

    Google Scholar 

  • Ulvskov, P.; Nielsen, T. H.; Seiden, P.; Marcussen, J. Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). I. Spatial distribution of endogenous cytokinins in relation to leaf growth. Planta 188:70–77; 1992.

    CAS  Google Scholar 

  • Vagera, J. Pepper (Capsicum spp.): in vitro induction of haploids. In: Bajaj, Y. P. S., ed. Biotechnology in agriculture and forestry, vol. 12. Berlin, Heidelberg, New York: Springer; 1990:374–392.

    Google Scholar 

  • Vagera, J.; Havránek, P. In vitro induction of androgenesis in Capsicum annuum L. and its genetic aspects. Biol. Plant. 27:10–21; 1985.

    CAS  Google Scholar 

  • Valera-Montero, L. L.; Ochoa-Alejo, N. A novel approach for chili pepper (Capsicum annuum L.) plant regeneration: shoot induction in rooted hypocotyls. Plant Sci. 84:215–219; 1992.

    CAS  Google Scholar 

  • Verástegui-Peña, Y. M. Expresión diferencial de mRNAs de células de chile (Capsicum annuum L.) tolerantes a polietilenglicol (PEG). Tesis de maestría. CINVESTAV-Unidad Irapuato, México; 1999.

    Google Scholar 

  • Wang, Y.-Y.; Kuo, C.-S.; Li, C.-L.; Chiang, C.-R. A preliminary report on the study of pollen plants of sweet peppers (Capsicum annuum L. var. grossum Bell). Proc. Symposium on Plant Tissue Culture, Boston, London, Melbourne: Pitman Advanced Publishing Program; 1981:243.

    Google Scholar 

  • Wang, Y.-Y.; Sun, C.-S.; Wang, C.-C.; Chien, N.-F. The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci. Sinica 16:147–151; 1973.

    Google Scholar 

  • Weathers, P. J.; Mohd Fadzillah, N. A.; Cheetham, R. D. Light inhibits the formation of capsaicin from Capsicum callus. Planta Med. 58:278–279; 1992.

    PubMed  CAS  Google Scholar 

  • Williams, P. D.; Wilkinson, A. K.; Lewis, J. A.; Black, G. M.; Mavituna, F. A method for the rapid production of fine plant cell suspension cultures. Plant Cell Rep. 7:459–462; 1988.

    Google Scholar 

  • Withers, L. A.; Street, H. E. Freeze preservation of cultured plant cells. III. The pregrowth phase. Physiol. Plant. 39:171–178; 1977.

    Google Scholar 

  • Zhu, Y.-X.; Ou-Yang, W.-J.; Zhang, Y.-F.; Chen, Z.-L. Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep. 16:71–75; 1996.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neftali Ochoa-Alejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa-Alejo, N., Ramirez-Malagon, R. In vitro chili pepper biotechnology. In Vitro Cell.Dev.Biol.-Plant 37, 701–729 (2001). https://doi.org/10.1007/s11627-001-0121-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0121-z

Key words

Navigation