Skip to main content
Log in

Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Novel solid polymer electrolytes, poly(vinylalcohol)-lithium perchlorate (PVA-LiClO4) and PVA-LiClO4-sulfolane are prepared by solvent casting method. The experimental results show that sulfolane addition enhances the ionic conductivity of PVA-LiClO4 complex by three orders. The maximum ionic conductivity of 1.14 ± 0.20 × 10−2 S cm−1 is achieved for 10 mol% sulfolane-added electrolyte at ambient temperature. Polymer-salt-plasticizer interactions are analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Lithium ion transference number is found by AC impedance spectroscopy combined with DC potentiostatic measurements. The results confirm that sulfolane improves the Li+ transference number of PVA-LiClO4 complex to 0.77 from 0.40. The electrochemical stability window of electrolytes is determined by cyclic voltammetry (CV). The broad electrochemical stability window of 5.45 V vs. lithium is obtained for maximum conducting electrolyte. All-solid-state cell is fabricated using maximum conducting electrolyte, and electrochemical impedance study is carried out. It reveals that electrolyte interfacial resistance with Li electrode is very low. The use of PVA-LiClO4-sulfolane as a viable electrolyte material for high-voltage lithium ion batteries is ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ravi M, Song S, Wang J, Wang T, Nadi R (2015) Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J Mater Sci: Mater Electronmicherla. doi:10.1007/s10854-015-3899-x

    Google Scholar 

  2. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448

    Article  CAS  Google Scholar 

  3. Gadjourova Z, Andreev YG, Tunsstall DP, Bruce PG (2001) Ionic conductivity in crystalline polymers. Nature 412:520–523

    Article  CAS  Google Scholar 

  4. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochim Acta 45:1371–1374

    Article  CAS  Google Scholar 

  5. Yang C-C, Lin S-J, Hsu S-T (2003) Synthesis and characterization of alkaline polyvinyl alcohol and poly (epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. J. Power Sources 122:210–218

    Article  CAS  Google Scholar 

  6. Rajendran S, Mahendran O (2001) Experimental investigations on plasticized PMMA/ PVA polymer blend electrolytes. Ionics 7:463–468

    Article  CAS  Google Scholar 

  7. Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2014) Preparation and characterization of polymer electrolyte of Glycidyl methacrylate-methyl methacrylate-LiClO4 plasticized with ethylene carbonate. International Journal of Polymer Science 638279:1–7

    Article  Google Scholar 

  8. Pradhan DK, Choudhary RNP, Samantaray BK, Karan NK, Katiya RS (2007) Effect of plasticizer on structural and electrical properties of polymer Nanocompsoite electrolytes. Int J Electrochem Sci 2:861–871

    CAS  Google Scholar 

  9. Jose Benedict T, Banumathi S, Veluchamy A, Gangadharan R, ZulfiharAhamad A, Rajendran S (1998) Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods. J Power Sources 75:171–174

    Article  Google Scholar 

  10. Fan L, Dang Z, Nan C-W, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209

    Article  CAS  Google Scholar 

  11. Tang S, Zou P, HanguoXiong HT (2008) Effect of nano-SiO2 on the performance of starch/polyvinylalcohol blend films. Carbohydr Polym 72:521–526

    Article  CAS  Google Scholar 

  12. Rathod SG, Bhajantri RF, Ravindrachary V, Pujari PK, Sheela T (2014) Ionic conductivity and dielectric studies of LiClO4 doped poly (vinylalcohol) (PVA)/chitosan (CS) composites. J Adv Dielect 4(1450033):1–7

    Google Scholar 

  13. Teoh KH, Ramesh S, Arof AK (2012) Investigation on the effect of nano silica towards cornstarch–lithium perchlorate-based polymer electrolytes. J Solid State Electrochem 16:3165–3170

    Article  CAS  Google Scholar 

  14. Fujinami T, Tokimune A, Mehta MA, Shriver DF, Rawsky GC (1997) Siloxyaluminate polymers with high Li + Ion conductivity. ChemMater 9:2236–2239

    CAS  Google Scholar 

  15. Tsuchida E, Kobayashi N, Single-Ion OH (1988) Conduction in poly (oligo (oxyethy1ene) methacrylate)-co-(alkali-metal methacrylates). Macromolecules 21:96–100

    Article  CAS  Google Scholar 

  16. Ryu SW, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM (2005) Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J Electrochem Soc 152:A158–A163

    Article  CAS  Google Scholar 

  17. Mehta MA, Fujinami T (1998) Novel inorganic–organic polymer electrolytes – preparation and properties. Solid State Ionics 113–115:187–192

    Article  Google Scholar 

  18. Blazejczyk A, Wieczorek W, Kovarsky R, Golodnitsky D, Peled E, Scanlon LG, Appetecchi GB, Scrosati B (2004) Novel solid polymer electrolytes with single lithium-ion transport. J Electrochem Soc 151:A1762–A1766

    Article  CAS  Google Scholar 

  19. Blazejczyk A, Szczupak M, Wieczorek W, Cmoch P, Appetecchi GB, Scrosati B, Kovarsky R, Golodnitsky D, Peled E (2005) Anion-binding Calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes. Chem Mater 17:1535–1537

    Article  CAS  Google Scholar 

  20. Mazor H, Goodnitsky D, Peled E, Wieczorek W, Scrosati B (2008) A search for a single-ion-conducting polymer electrolyte: combined effect of anion trap and inorganic filler. J Power Sources 178:736–743

    Article  CAS  Google Scholar 

  21. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B (1999) Physical and Chemical Properties of Nanocomposite Polymer Electrolytes. J Phys Chem B 10310632–10638

  22. Chung SH, Wang Y, Persi L, Corce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by the addition of nano scale inorganic oxides. J Power Sources 97-98:644–648

    Article  CAS  Google Scholar 

  23. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-IonTransference number. J Electrochem Soc 157(7):A846–A849

    Article  CAS  Google Scholar 

  24. Xu K, Austen Angell C (2002) Sulfone-based electrolytes for lithium-ion batteries. J Electrochem Soc 149(7):A920–A926

    Article  CAS  Google Scholar 

  25. Abouimrane A, Belharouak I, Amine K (2009) Sulfone based electrolytes for high voltage Li-ion batteries. Electrochem Commun 11:1073–1076

    Article  CAS  Google Scholar 

  26. Xiaoguang Sun C, Angell A (2009) Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochem Commun 11:1418–1421

    Article  Google Scholar 

  27. Hirankumar G, Selvasekarpandian S, Kuwata N, Kawamura J, Hattori T (2005) Thermal, electrical and optical studies on the poly (vinyl alcohol) based polymer electrolyte. J Power Sources 144:262–267

    Article  CAS  Google Scholar 

  28. Liew C-W, Ong YS, Lim JY, Lim CS, Teoh KH, Ramesh S (2013) Effect of ionic liquid on semi–crystalline poly(vinylidene fluoride–co–hexafluoropropylene) solid copolymer electrolytes. Int J Electrochem Sci 8:7779–7794

    CAS  Google Scholar 

  29. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference number in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  30. Hema M, Selvasekerapandian S, Hirankumar G, Sakunthala A, Arunkumar D, Nithya H (2009) Structural and thermal studies of PVA:NH4I. J Phys Chem Solids 70:1098–1103

    Article  CAS  Google Scholar 

  31. Fini G, Mirone P (1975) Short-range orientation effects in dipolar aprotic liquids – III intermolecular coupling of vibrations in sulfoxides, sulfones, nitriles and other compounds. Spectrochimca Acta 32(A):625–629

    Google Scholar 

  32. Yu C, Yun-Hong L-JZ (2004) ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4 and Mg(ClO4)2 solutions. Phys Chem Chem Phys 6:537–542

    Article  Google Scholar 

  33. Xi J, Bai Y, Qiu X, Zhu W, Chen L, Tang X (2005) Conduction and transport properties of microporous molecular sieves doped composite polymer electrolyte used for lithium battery. New J Chem 29:1454–1460

    Article  CAS  Google Scholar 

  34. Liew C-W, Ramesh S (2013) Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose 20:3227–3237

    Article  CAS  Google Scholar 

  35. Subramania A, KalyanaSundaram NT, Vijaya Kumar G, Vasudevan T (2006) New polymer electrolyte based on (PVAPAN) blend for Li-ion battery applications. Ionics 12:175–178

    Article  CAS  Google Scholar 

  36. Fernicola A, Croce F, Scrosati B, Watanabe T, Ohno H (2007) LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J Power Sources 174:342–348

    Article  CAS  Google Scholar 

  37. Zhao J, Wang L, He X, Wan C, Jiang C (2008) Determination of lithium-ion transference numbers in LiPF6-PC solutions based on electrochemical measurements and NMR measurements. J Electrochem Soc 155(4):A292–A296

    Article  CAS  Google Scholar 

  38. Mindemark J, Sun B, Torma E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170

    Article  CAS  Google Scholar 

  39. Yu H, Wang Y, Asakura D, Hosono E, Zhang T, Zhou H (2012) Electrochemical kinetics of the 0.5Li2MnO3.0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries. RSC Adv. doi:10.1039/c2ra20772a

    Google Scholar 

Download references

Acknowledgements

Financial support from the Science and Engineering Research Board, Department of Science and Technology, Government of India through sanction number SERB SR/FTP/PS-126/2010 has greatly been acknowledged. One of the authors (S. Abarna) is thankful to the management of the PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India for awarding an institute fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hirankumar.

Electronic supplementary material

ESM 1

(DOC 2461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarna, S., Hirankumar, G. Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity. Ionics 23, 1733–1743 (2017). https://doi.org/10.1007/s11581-017-2008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2008-y

Keywords

Navigation