Skip to main content
Log in

Liquidity risk and the term structure of interest rates

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper develops an arbitrage-free pricing theory for a term structure of fixed income securities that incorporates liquidity risk. In our model, there is a quantity impact on the term structure of zero-coupon bond prices from the trading of any single zero-coupon bond. We derive a set of conditions under which the term structure evolution is arbitrage-free. These no arbitrage conditions constrain both the risk premia and the term structure’s volatility. In addition, we also provide conditions under which the market is complete, and we show that the replication cost of an interest rate derivative is the solution to a backward stochastic differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, P., Baum, D.: Hedging and portfolio optimization in financial markets with a large trader. Math. Financ. 14, 1–18 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bank, P., Kramkov, D.: A model for a large investor trading at market indifference prices. II: continuous-time case, preprint (2011)

  3. Cherian, J., Jacquier, E., Jarrow, R.: A model of the convenience yields in on-the-run treasuries. Rev. Deriv. Res. 7, 79–97 (2004)

    Article  MATH  Google Scholar 

  4. Çetin, U., Jarrow, R., Protter, P.: Liquidity risk and arbitrage pricing theory. Financ. Stoch. 8, 311–341 (2004)

    Article  MATH  Google Scholar 

  5. Çetin, U., Rogers, L.: Modeling liquidity effects in discrete time. Math. Financ. 17, 15–29 (2007)

    Article  MATH  Google Scholar 

  6. Çetin, U., Soner, M., Touzi, N.: Option hedging for small investors under liquidity costs. Financ. Stoch. 14, 317–341 (2010)

    Article  MATH  Google Scholar 

  7. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 5, 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  8. D’Amico, S., King, S.: Flow and Stock Effects of Large-Scale Treasury Purchases, Finance and Economics Discussion Series 2010–52. Board of Governors of the Federal Reserve System, Washington (2010)

    Google Scholar 

  9. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. El Karoui, N., Shige, P., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Financ. 7, 1–71 (1997)

    Article  MATH  Google Scholar 

  11. Gagnon, J., Raskin, M., Remache, J., Sack, B.: Large-scale asset purchases by the federal reserve: did they work? Federal Reserve Bank of New York Staff Report no. 441 (2010)

  12. Gokay, S., Soner, M.: Liquidity in a binomial market. Math. Financ. 22, 250–277 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hamilton, J., Wu, J.: The effectiveness of alternative monetary policy tools in a zero lower bound environment. J. Money Credit Bank. 44, 3–46 (2012)

    Article  Google Scholar 

  14. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  15. Huberman, G., Stanzl, W.: Price manipulation and quasi-arbitrage. Econometrica 72, 1247–1275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jarrow, R.: Default parameter estimation using market prices. Financ. Anal. J. 57(5), 75–92 (2001)

    Article  Google Scholar 

  17. Jarrow, R., Li, H.: The impact of quantitative easing on the US term structure of interest rates, working paper, Cornell University (2012)

  18. Jarrow, R., Protter, P., Roch, A.: A liquidity based model for asset price bubbles. Quant. Financ. 12, 1339–1349 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558–602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, C., Wei, M.: Term structure modelling with supply factors and the federal reserve’s large scale asset purchase programs. Working paper, Federal Reserve Board of Governors, Division of Monetary Affairs, Washington, D. C. (2012)

  21. Meaning, J., Zhu, F.: The impact of recent central bank asset purchase programmes. BIS Q. Rev., December, 73–83 (2011)

  22. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)

    Book  Google Scholar 

  23. Roch, A.: Liquidity risk, price impacts and the replication problem. Financ. Stoch. 15, 399–419 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Roch, A., Soner, M.: Resilient price impact of trading and the cost of illiquidity. Int. J. Theor. Appl. Financ. 13, 27 pages (2013)

  25. Veraar, M.: The stochastic Fubini theorem revisited. Stoch. Int. J. Probab. Stoch. Process. 84, 543–551 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wright, J.: What does monetary policy do to long-term interest rates at the zero lower bound? Econ. J. 122, F447–F466 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The second author’s research is partly supported by the Institute for Financial Mathematics of Montreal (IFM2), the Caisse de dépot et placement du Québec Chair in Portfolio Management and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. Roch.

Appendix

Appendix

Lemma 1

Under (C1), there exist \(\mathcal {P}\otimes \mathcal {B}(\mathbb {R}^{d})\)-measurable functions \(S^{-1}\) and \(\varPhi '\) that satisfy

$$\begin{aligned} \varPhi '_{t}(z;\omega )=\varPsi _{t}(\mathbf {x};\omega ) \text{ and } S^{-1}(t,z,\omega )=\mathbf {x} \text{ when } z=S(t,\mathbf {x};\omega ). \end{aligned}$$

Proof

By (C1), there exists an inverse of \(S\). By the Kuratowski-Ryll-Nardzewski Theorem, the inverse \(S^{-1}\) and the function \(\varPhi '\) can be chosen to be \(\mathcal {P}\otimes \mathcal {B}(\mathbb {R}^{d})\)-measurable if it can be shown that the set-valued function

$$\begin{aligned} F(t,z;\omega )\mapsto \{(p,\mathbf {x})\in \mathbb {R} \times \mathbb {R}^{n}:S(t,\mathbf {x};\omega )=z \text{ and } p=\varPsi _{t}(\mathbf {x};\omega )\} \end{aligned}$$

is closed-valued and strongly measurable. For fixed \(t,\omega \), the fact that \(S(t,\cdot ;\omega )\) and \(\varPsi _{t}(\cdot ;\omega )\) are continuous clearly implies that \(F(t,z,\omega )\) is closed, and non-empty due to (C1). Furthermore, if \(K\subset \mathbb {R}\times \mathbb {R}^{n}\) is a compact set and \(K_{0}\) is a countable dense subset of \(K\), the set

$$\begin{aligned} \{(t,z,\omega ):K\cap F(t,z,\omega )\ne \emptyset \}&= \{(t,z,\omega ):\exists (p,\mathbf {x})\in K,S(t,\mathbf {x};\omega )=z \text{ and } p=\varPsi _{t}(\mathbf {x};\omega )\}\\&= \bigcap _{n\ge 1}\bigcup _{(p,\mathbf {x})\in K_{0}}\left\{ (t,z,\omega ):|\varPsi _{t}(\mathbf {x};\omega )-p|+| S(t,\mathbf {x};\omega )-z|<\frac{1}{n}\right\} \end{aligned}$$

is measurable. By extension, if \(C\) is a closed set, then \(C=\bigcup _{n\ge 1}C\cap \overline{B}_{n}\), with \(\overline{B}_{n}\) the closed ball of radius \(n\) around \(0\) in \(\mathbb {R}\times \mathbb {R}^{n}\). Since \(C\cap \overline{B}_{n}\) is compact for all \(n\),

$$\begin{aligned} \{(t,z,\omega ):C\cap F(t,z;\omega )\ne \emptyset \}&= \bigcup _{n\ge 1}\{(t,z,\omega ):\exists (p,\mathbf {x})\in (C\cap \overline{B}_{n})\cap F(t,z;\omega )\} \end{aligned}$$

is also measurable, which by definition implies that \(F\) is strongly measurable.\(\square \)

Lemma 2

Under (C1) and (C2’), \(\widetilde{\varPhi }\) is \(\mathcal {P}\otimes \mathcal {B}(\mathbb {R}^{d})\)-measurable and, for all \(\epsilon >0\), there exists a \(\mathcal {P}\otimes \mathcal {B}(\mathbb {R}^{d})\)-measurable function \(\mathcal {X}:\mathbb {R}_{+}\times \varOmega \times \mathbb {R}^{d}\rightarrow \mathbb {R}^{n}\) such that

$$\begin{aligned} S(t,\mathcal {X}(t,z;\omega );\omega )=z \text{ and } \varPsi _{t}(\mathcal {X}(t,z;\omega );\omega )\le \widetilde{\varPhi }_{t}(z;\omega )+\epsilon \end{aligned}$$

Proof

We first show that \(\widetilde{\varPhi }\) is measurable. For this, it suffices to prove that

$$\begin{aligned} \widetilde{\varPhi }_{t}(z;\omega )=\lim _{n\ge 1} \inf _{\mathbf {x}\in \mathbb {Q}^{n}} \left\{ \varPsi _{t}(\mathbf {x};\omega ):|S(t,\mathbf {x};\omega )- z|\le \frac{1}{n}\right\} . \end{aligned}$$
(35)

Indeed, the fact that \(\varPsi (\mathbf {x};\cdot )\) and \(S(\mathbf {x})\) are measurable for all \(\mathbf {x}\) would then imply that \(\widetilde{\varPhi }\) is measurable. To prove (35), we note that for fixed \(\omega \) and \(t, S(t,\mathbf {x};\omega )\) and \(\varPsi _{t}(\mathbf {x};\omega )\) are continuous functions of \(\mathbf {x}\), hence

$$\begin{aligned} \inf _{\mathbf {x}\in \mathbb {Q}^{n}}\{\varPsi _{t}(\mathbf {x};\omega ) :|S(t,\mathbf {x},\omega )-z|\le \frac{1}{n}\}=\inf _{\mathbf {x} \in \mathbb {R}^{n}}\{\varPsi _{t}(\mathbf {x};\omega ):|S(t,\mathbf {x},\omega ) -z|\le \frac{1}{n}\}\le \widetilde{\varPhi }_{t}(z;\omega ). \end{aligned}$$

However, for any \(\mathbf {x}\) such that \(|S(t,\mathbf {x},\omega )-z|\le \frac{1}{n}\), (C2’) implies that \(|\varPsi _{t}(\mathbf {x};\omega )-\varPsi _{t}(\mathbf {x}';\omega )|\le \frac{1}{n}C\) when \(z=S(t,\mathbf {x}',\omega ),\) in which \(C\) is a positive constant independent of \(\mathbf {x},\mathbf {x}'\) but dependent on \((z,\omega )\) and \(t\). Hence,

$$\begin{aligned} \Big |\inf _{\mathbf {x}\in \mathbb {Q}^{n}}\left\{ \varPsi _{t} (\mathbf {x};\omega ):|S(t,\mathbf {x},\omega )-z|\le \frac{1}{n}\right\} -\widetilde{\varPhi }_{t}(z;\omega )\Big |\le \frac{1}{n}C. \end{aligned}$$

By taking the limit as \(n\rightarrow \infty \), we conclude that

$$\begin{aligned} \widetilde{\varPhi }_{t}(z;\omega )=\lim _{n\ge 1} \inf _{\mathbf {x}\in \mathbb {Q}^{n}}\left\{ \varPsi _{t} (\mathbf {x};\omega ):|S(t,\mathbf {x},\omega )-{z}|\le \frac{1}{n}\right\} . \end{aligned}$$

In fact, we can also prove that \(\widetilde{\varPhi }_{t}^{K}(z;\omega ):=\inf _{\mathbf {x}\in K}\{\varPsi _{t}(\mathbf {x};\omega ):{z}=S(t,\mathbf {x};\omega )\}\) is also measurable when \(K\) is a compact subset of \(\mathbb {R}^{n}\), by replacing \(\mathbb {Q}^{n}\) in the above argument by a countable dense subset of \(K\). This implies that the set

$$\begin{aligned} \{(t,{z},\omega ):\exists \mathbf {x}\in K,S(t,\mathbf {x};\omega )={z} \text{ and } \varPsi _{t}(\mathbf {x};\omega )\le \widetilde{\varPhi }_{t}({z};\omega )+\epsilon \} \end{aligned}$$

is measurable for all \(\epsilon >0\), which in turn implies that the set-valued function

$$\begin{aligned} F(t,{z},\omega )\mapsto \{\mathbf {x}\in \mathbb {R}^{n}:S(t,\mathbf {x};\omega )={z} \text{ and } \varPsi _{t}(\mathbf {x};\omega )\le \widetilde{\varPhi }_{t}({z};\omega )+\epsilon \} \end{aligned}$$

is strongly measurable. It is nonempty and closed-valued since \(\varPsi _{t}(\mathbf {x};\omega )\) and \(S(t,\mathbf {x};\omega )\) are continuous functions of \(\mathbf {x}\). Therefore there exists a measurable function \(\mathcal {X}(t,{z},\omega )\) such that \(\mathcal {X}(t,{z},\omega )\in F(t,{z},\omega )\) by the Kuratowski–Ryll-Nardzewski Theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrow, R.A., Roch, A.F. Liquidity risk and the term structure of interest rates. Math Finan Econ 9, 57–83 (2015). https://doi.org/10.1007/s11579-014-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-014-0134-0

Keywords

JEL subject classification

Navigation