Skip to main content

Unified Model Arbitrage-Free Term Structure of Flow Risks

  • Living reference work entry
  • First Online:
Encyclopedia of Finance

Abstract

Interest movement models are important to financial modeling because they can be used for valuing any financial instruments whose values are affected by interest rate movements. Specifically, we can classify the interest rate movement models into two categories: equilibrium models and no-arbitrage models. The equilibrium models emphasize the equilibrium concept. However, the no-arbitrage models argue that the term structure movements should satisfy the no-arbitrage condition. The arbitrage-free interest rate model is an extension of the Black-Scholes model to value interest rate derivatives. The model valuation is assured to be consistent with the observed yield curve in valuing interest rate derivatives and providing accurate pricing of interest rate contingent claims. Therefore, it is widely used for portfolio management and other capital market activities.

The authors would like to thank the participants at Financial Innovation Conference, Owen School, Vanderbilt University 2008 for their comments. We would also like to thank Eric A Anderson and Charles Fenner for their insights into energy contracts. We are responsible for any errors in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    We assume that Ï„ is 1 for simplicity.

  2. 2.

    It is known that the discrete CRR model converges to the continuous BS model as the number of partitions grows. By the same token, Eqs. (19–22) also converge to the continuous BS model at the same speed.

  3. 3.

    If we roll back from period T where the value at time T and state i is u(T, i), then we have \( {e}^{-\sum \limits_{i=0}^TU(i)} \) equals the forward price

  4. 4.

    For a general form of Arrow-Debreu primitive securities, see Appendix A.

  5. 5.

    The three-factor unified Ho and Lee model is given in Appendix B.

References

  • Black, F., E. Derman, and W. Toy. 1990. A one-factor model of interest rates and its application to Treasury bond options. Financial Analysts Journal 46: 33–39.

    Article  Google Scholar 

  • Black, F., and M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–654.

    Article  Google Scholar 

  • Brace, A., D. Gatarek, and M. Musiela. 1997. The market model of interest rate dynamics. Mathematical Finance 7: 127–155.

    Article  Google Scholar 

  • Chen, L., D. Lesmond, and J. Wei. 2007. Corporate yield spreads and bond liquidity. Journal of Finance 62: 119–149.

    Article  Google Scholar 

  • Cheyette, O. 1997. Interest rate models. In Advances in fixed Income valuation, modeling, and risk management, ed. Frank J. Fabozzi. New Hope: Frank J. Fabozzi Associates.

    Google Scholar 

  • Covitz, D., and C. Downing. 2007. Liquidity or credit risk? The determinant of very short-term corporate yield spreads. Journal of Finance 62: 2303–2328.

    Article  Google Scholar 

  • Cox, J., J. Ingersoll, and S. Ross. 1985. A theory of term structure of interest rates. Econometrica 53: 363–384.

    Article  Google Scholar 

  • Das, S., L. Freed, G. Geng, and N. Kapadia. 2006. Correlated default risk. The Journal of Fixed Income 16: 7–32.

    Article  Google Scholar 

  • DePrince, A., Jr. 2003. Assessing the term structure of expected inflation using Treasury inflation-protected securities. Business Economics 38: 46–54.

    Google Scholar 

  • Duffie, D. 2005. Credit risk modeling with affine processes. Journal of Banking and Finance 29: 2751–2802.

    Article  Google Scholar 

  • Eydeland, A., and K. Wolyniec. 2003. Energy and power risk management: New developments in modeling, pricing, and hedging. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Harrison, J., and D. Kreps. 1979. Martingales and arbitrage in multi-period securities markets. Journal of Economic Theory 20: 381–408.

    Article  Google Scholar 

  • Heath, D., R. Jarrow, and A. Morton. 1992. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 60: 77–105.

    Article  Google Scholar 

  • Ho, T.S.Y. 1992. Managing Illiquid Bonds and Linear Path Space. The Journal of Fixed Income 2: 80–94.

    Google Scholar 

  • Ho, T.S.Y., and S.B. Lee. 1986. Term structure movements and pricing interest rate contingent claims. The Journal of Finance 41: 1011–1029.

    Article  Google Scholar 

  • ———. 2004a. The Oxford guide to financial modeling. New York: Oxford University Press.

    Google Scholar 

  • ———. 2004b. A closed-form multifactor binomial interest rate model. The Journal of Fixed Income 14: 8–16.

    Article  Google Scholar 

  • ———. 2007. Generalized Ho-Lee model: A multi-factor state-time dependent implied volatility function approach. The Journal of Fixed Income 17: 18–37.

    Article  Google Scholar 

  • ———. 2009a. A unified credit and interest rate arbitrage-free contingent claim model. The Journal of Fixed Income 18: 5–17.

    Article  Google Scholar 

  • ———. 2009b. Valuation of credit contingent claims: An arbitrage-free credit model. Journal of Investment Management 7: 49–65.

    Google Scholar 

  • Ho, T.S.Y., and B. Mudavanu. 2007. Interest rate models’ implied volatility function stochastic movements. Journal of Investment Management 5: 1–22.

    Google Scholar 

  • Litterman, R., and J.A. Scheinkman. 1991. Common factors affecting bond returns. The Journal of Fixed Income 1: 54–61.

    Article  Google Scholar 

  • Longstaff, F., and A. Rajan. 2008. An empirical analysis of the pricing of collateralized debt obligation. Journal of Finance 63: 529–563.

    Article  Google Scholar 

  • Rebonato, R. 1998. Interest rate option models: Understanding, analyzing and using models for exotic interest-rate options. Chichester: John Wiley.

    Google Scholar 

  • Vasicek, O. 1977. An equilibrium characterization of the term structure. Journal of Financial Economics 5: 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Y. Ho .

Editor information

Editors and Affiliations

Appendices

Appendix A: A General Form of the Arrow-Debreu Primitive Securities

The Arrow-Debreu primitive securities at time n are equal to a vector with (n + 1) elements, which we can calculate by multiplying the following n matrixes.

$$ {\displaystyle \begin{array}{c}\ \left[\frac{e^{-\rho (0)}}{1+{\delta}^0}\kern0.5em \frac{e^{-\rho (0)}}{1+{\delta}^0}\right]\times \left[\begin{array}{ccc}\frac{e^{-\rho (1)}\delta }{1+{\delta}^1}& \frac{e^{-\rho (1)}\delta }{1+{\delta}^1}& 0\\ {}0& \frac{e^{-\rho (1)}}{1+{\delta}^1}& \frac{e^{-\rho (1)}}{1+{\delta}^1}\end{array}\right]\times \left[\begin{array}{cccc}\frac{e^{-\rho (2)}{\delta}^2}{1+{\delta}^2}& \frac{e^{-\rho (2)}{\delta}^2}{1+{\delta}^2}& 0& 0\\ {}0& \frac{e^{-\rho (2)}\delta }{1+{\delta}^2}& \frac{e^{-\rho (2)}\delta }{1+{\delta}^2}& 0\\ {}0& 0& \frac{e^{-\rho (2)}}{1+{\delta}^2}& \frac{e^{-\rho (2)}}{1+{\delta}^2}\end{array}\right]\\ {}\kern3.5em 1\times 2\kern6.75em 2\times 3\kern12.25em 3\times 4\\ {}\\ {}\times \left[\begin{array}{ccccc}\frac{e^{-\rho (3)}{\delta}^3}{1+{\delta}^3}& \frac{e^{-\rho (3)}{\delta}^3}{1+{\delta}^3}& 0& 0& 0\\ {}0& \frac{e^{-\rho (3)}{\delta}^2}{1+{\delta}^3}& \frac{e^{-\rho (3)}{\delta}^2}{1+{\delta}^3}& 0& 0\\ {}0& 0& \frac{e^{-\rho (3)}{\delta}^1}{1+{\delta}^3}& \frac{e^{-\rho (3)}{\delta}^1}{1+{\delta}^3}& 0\\ {}0& 0& 0& \frac{e^{-\rho (3)}}{1+{\delta}^3}& \frac{e^{-\rho (3)}}{1+{\delta}^3}\end{array}\right]\kern0.75em \cdots \cdots \cdots \\ {}\kern9em 4\times 5\\ {}\\ {}\cdots \cdots \cdots \kern0.75em \times \kern0.5em \left[\begin{array}{cccccc}\frac{e^{-\rho \left(n-1\right)}{\delta}^{n-1}}{1+{\delta}^{n-1}}& \frac{e^{-\rho \left(n-1\right)}{\delta}^{n-1}}{1+{\delta}^{n-1}}& 0& \cdots & 0& 0\\ {}0& \frac{e^{-\rho \left(n-1\right)}{\delta}^{n-2}}{1+{\delta}^{n-1}}& \frac{e^{-\rho \left(n-1\right)}{\delta}^{n-1}}{1+{\delta}^{n-1}}& \cdots & 0& 0\\ {}\vdots & \vdots & \frac{e^{-\rho \left(n-1\right)}{\delta}^{n-3}}{1+{\delta}^{n-1}}& \frac{e^{-\rho \left(n-1\right)}{\delta}^{n-3}}{1+{\delta}^{n-1}}& \vdots & \vdots \\ {}0& 0& \cdots & \ddots & \ddots & 0\\ {}0& 0& \cdots & 0& \frac{e^{-\rho \left(n-1\right)}}{1+{\delta}^{n-1}}& \frac{e^{-\rho \left(n-1\right)}}{1+{\delta}^{n-1}}\end{array}\right]\\ {}\kern15.25em n\times \left(n+1\right)\end{array}} $$

For example, when n is equal to 1, the Arrow-Debreu primitive securities at time 1 is the first matrix such that A(1, 1) is equal to \( \frac{e^{-\rho (0)}}{1+{\delta}^0} \) and A(1, 0) is equal to \( \frac{e^{-\rho (0)}}{1+{\delta}^0} \). When n is equal to 2, we can generate the Arrow-Debreu primitive securities at time 2 by multiplying the first two matrixes such that

$$ {\displaystyle \begin{array}{l}\left[\frac{e^{-\rho (0)}}{1+{\delta}^0}\kern0.5em \frac{e^{-\rho (0)}}{1+{\delta}^0}\right]\times \left[\begin{array}{ccc}\frac{e^{-\rho (1)}\delta }{1+{\delta}^1}& \frac{e^{-\rho (1)}\delta }{1+{\delta}^1}& 0\\ {}0& \frac{e^{-\rho (1)}}{1+{\delta}^1}& \frac{e^{-\rho (1)}}{1+{\delta}^1}\end{array}\right]\\ {}\kern0.5em =\kern0.5em \left[\frac{e^{\sum \limits_{t=0}^1-\rho (t)}\delta }{\prod \limits_{t=1}^11+{\delta}^t}\kern1em \frac{e^{\sum \limits_{t=0}^1-\rho (t)}\left(1+\delta \right)}{\prod \limits_{t=1}^11+{\delta}^t}\kern1em \frac{e^{\sum \limits_{t=0}^1-\rho (t)}1}{\prod \limits_{t=1}^11+{\delta}^t}\right]\\ {}\kern2.25em 1\times 2\kern8em 2\times 3\kern11.75em 1\times 3\kern2em \end{array}} $$

The first element of the vector is A(2, 2), the second element is A(2, 1), and the last element is A(2, 0). Similarly, we can generate the Arrow-Debreu primitive securities at the following periods and determine them accordingly. The intuition behind the general form of the Arrow-Debreu primitive securities is the recursive relationship among A(n, i), A(n − 1, i), and A(n − 1, i − 1) for any n and i such as \( A\left(n,i\right)=\frac{e^{-r\left(n-1\right)}{\delta}^i}{\left(1+{\delta}^{n-1}\right)}A\left(n-1,i\right)+\frac{e^{-r\left(n-1\right)}{\delta}^{i-1}}{\left(1+{\delta}^{n-1}\right)}A\left(n-1,i-1\right) \).

Appendix B: Three-Factor Unified Model

The model is provided in Ho-Lee (2007). For completeness, we specify the model in this appendix. Let \( {B}_{i,j,l}^n(T) \) be the T year bond price at time n, at state (i, j, k). Then \( {B}_{i,j,l}^n(T) \) is specified by combining three one-factor models. Specifically, we have

$$ {\displaystyle \begin{array}{l}{B}_{i,j,l}^n(T)=\frac{P\left(n+T\right)}{P(n)}\prod \limits_{k=1}^n\left(\frac{1+{\delta}_{0,r}^{k-1}\left(n-k\right)}{1+{\delta}_{0,r}^{k-1}\left(n-k+T\right)}\right)\prod \limits_{k=0}^{i-1}{\delta}_{k,r}^{n-1}(T)\\ {}\kern3.25em \times \frac{S\left(n-1+T\right)}{S\left(n-1\right)}\prod \limits_{k=1}^n\left(\frac{1+{\delta}_{0,h}^{k-1}\left(n-k\right)}{1+{\delta}_{0,h}^{k-1}\left(n-k+T\right)}\right)\prod \limits_{k=0}^{j-1}{\delta}_{k,h}^{n-1}(T)\\ {}\kern3.25em \times \frac{L\left(n+T\right)}{L(n)}\prod \limits_{k=1}^n\left(\frac{1+{\delta}_{0,l}^{k-1}\left(n-k\right)}{1+{\delta}_{0,l}^{k-1}\left(n-k+T\right)}\right)\prod \limits_{k=0}^{l-1}{\delta}_{k,l}^{n-1}(T)\end{array}} $$
(43)

where

$$ {\displaystyle \begin{array}{c}{\delta}_{i,r}^n(T)={\delta}_{i,r}^n{\delta}_{i,r}^{n+1}\left(T-1\right)\left(\frac{1+{\delta}_{i+1,r}^{n+1}\left(T-1\right)}{1+{\delta}_{i,r}^{n+1}\left(T-1\right)}\right)\\ {}{\delta}_{i,h}^n(T)={\delta}_{i,h}^n{\delta}_{i,h}^{n+1}\left(T-1\right)\left(\frac{1+{\delta}_{i+1,h}^{n+1}\left(T-1\right)}{1+{\delta}_{i,h}^{n+1}\left(T-1\right)}\right)\\ {}{\delta}_{i,l}^n(T)={\delta}_{i,l}^n{\delta}_{i,l}^{n+1}\left(T-1\right)\left(\frac{1+{\delta}_{i+1,l}^{n+1}\left(T-1\right)}{1+{\delta}_{i,l}^{n+1}\left(T-1\right)}\right)\end{array}} $$
(44)

and the one-period forward volatilities are given by definition,

$$ {\displaystyle \begin{array}{c}{\delta}_{i,r}^m(1)={\delta}_{i,r}^m=\exp \left(-2\cdot {\sigma}_r(m)\min \left({h}_{i,r}^m,{H}_r\right)\Delta {t}^{3/2}\right)\\ {}{\delta}_{i,h}^m(1)={\delta}_{i,h}^m=\exp \left(-2\cdot {\sigma}_h(m)\min \left({h}_{i,h}^m,{H}_h\right)\Delta {t}^{3/2}\right)\\ {}{\delta}_{i,l}^m(1)={\delta}_{i,l}^m=\exp \left(-2\cdot {\sigma}_l(m)\min \left({h}_{i,l}^m,{H}_l\right)\Delta {t}^{3/2}\right)\end{array}} $$
(45)

Where the functions σm(n) = (a + bn) exp (−cn) + d where m = r, h, l is specified by the parameters a, b, c, and d, which can be obtained from the calibration to the market price of an option on CDS, etc. This specification of the implied volatility function allows for a broad range of shapes including downward sloping or dumped shapes.

Using the direct extension, we can specify the one-period hazard rates for the two-factor model for any future period m and state i, and \( {h}_{i,1}^m \) and \( {h}_{i,2}^m \) are defined by

$$ {\displaystyle \begin{array}{l}{h}_{i,r}^m\Delta t=-\log \left(\frac{P\left(m+1\right)}{P(m)}\right)-\sum \limits_{k=1}^m\log \left(\frac{1+{\delta}_{0,r}^{k-1}\left(m-k\right)}{1+{\delta}_{0,r}^{k-1}\left(m-k+1\right)}\right)-\sum \limits_{k=0}^{i-1}\log \left({\delta}_{k,r}^{m-1}(1)\right)\\ {}{h}_{i,h}^m\Delta t=-\log \left(\frac{S(m)}{S\left(m-1\right)}\right)-\sum \limits_{k=1}^m\log \left(\frac{1+{\delta}_{0,h}^{k-1}\left(m-k\right)}{1+{\delta}_{0,h}^{k-1}\left(m-k+1\right)}\right)-\sum \limits_{k=0}^{i-1}\log \left({\delta}_{k,h}^{m-1}(1)\right)\\ {}{h}_{i,l}^m\Delta t=-\log \left(\frac{L(m)}{L\left(m-1\right)}\right)-\sum \limits_{k=1}^m\log \left(\frac{1+{\delta}_{0,l}^{k-1}\left(m-k\right)}{1+{\delta}_{0,l}^{k-1}\left(m-k+1\right)}\right)-\sum \limits_{k=0}^{i-1}\log \left({\delta}_{k,l}^{m-1}(1)\right)\end{array}} $$
(46)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ho, T.S.Y., Lee, S.B. (2021). Unified Model Arbitrage-Free Term Structure of Flow Risks. In: Lee, CF., Lee, A.C. (eds) Encyclopedia of Finance. Springer, Cham. https://doi.org/10.1007/978-3-030-73443-5_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73443-5_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73443-5

  • Online ISBN: 978-3-030-73443-5

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics