Skip to main content
Log in

Analytical Solution and Exposure Analysis of a Pharmacokinetic Model with Simultaneous Elimination Pathways and Endogenous Production: The Case of Multiple Dosing Administration

  • Special Issue: Mathematics to Support Drug Discovery and Development
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, a typical pharmacokinetic (PK) model is studied for the case of multiple intravenous bolus-dose administration. This model, of one-compartment structure, not only exhibits simultaneous first-order and Michaelis–Menten elimination, but also involves a constant endogenous production. For the PK characterization of the model, we have established the closed-form solution of concentrations over time, the existence and local stability of the steady state. Using analytical approaches and the concept of corrected concentration, we have shown that the area under the curve (\(\hbox {AUC}^{corr}_{ss,\tau }\)) at steady state is higher compared to that at the single dose (\(\hbox {AUC}^{corr}_{0-\infty }\)). Moreover, by splitting the dose and dosing interval into halves, we have revealed that it can result in a significant decrease in the steady-state average concentration. These model-based findings, which contrast with the current knowledge for linear PK, confirm the necessity to revisit drugs exhibiting nonlinear PK and to suggest a rational way of using mathematical analysis for the dosing regimen design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal Ravil P (2000) Difference equations and inequalities. Theory, methods, and applications, 2nd edn., rev. and expanded. New York

  • Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert \(W\) function. Adv Comput Math 5:329–359

    Article  MathSciNet  MATH  Google Scholar 

  • Craig M, Humphries AR, Nekka F, Bélair J, Mackey MC LJ (2015) Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimise neutropenia. J Theor Biol 385:77–89

    Article  MATH  Google Scholar 

  • Craig M, Humphries AR, Mackey MC (2016) A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalization. Bull Math Biol 78(12):2304–2357

    Article  MathSciNet  MATH  Google Scholar 

  • Dirks NL, Meibohm B (2010) Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(10):633–659

    Article  Google Scholar 

  • European Medicines Agency (2010) https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf. Accessed 11 Aug 2019

  • FDA Guidance (2014) Guidance for industry. Bioavailability and bioequivalence studies submitted in NDAs or INDs—general considerations. https://www.fda.gov/media/88254/download. Accessed 11 Aug 2019

  • Foley C, Mackey MC (2009) Mathematical model for G-CSF administration after chemotherapy. J Theor Biol 257:27–44

    Article  MathSciNet  MATH  Google Scholar 

  • Frymoyer A, Juul SE, Massaro AN, Bammler TK, Wu YW (2017) High-dose erythropoietin population pharmacokinetics in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. Pediatr Res 81(6):865–872

    Article  Google Scholar 

  • Gibaldi M, Perrier D (2007) Pharmacokinetics. Informa Healthcare USA Inc, New York

    Google Scholar 

  • Health Canada (2018) Guidance document: conduct and analysis of comparative bioavailability studies. https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/bioavailability-bioequivalence/conduct-analysis-comparative.pdf. Accessed 11 Aug 2019

  • Jin F, Krzyzanski W (2004) Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS Pharm Sci 6(1):E9

    Article  Google Scholar 

  • Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(8):493–507

    Article  Google Scholar 

  • Klitgaard T, Nielsen JN, Skettrup MP, Harper A, Lange M (2009) Population pharmacokinetic model for human growth hormone in adult patients in chronic dialysis compared with healthy subjects. Growth Horm IGF Res 19(6):463–470

    Article  Google Scholar 

  • Kloft C, Graefe EU, Tanswell P, Scott AM, Hofheinz R, Amelsberg A, Karlsson MO (2004) Population pharmacokinetics of sibrotuzumab, a novel therapeutic monoclonal antibody, in cancer patients. Invest New Drugs 22(1):39–52

    Article  Google Scholar 

  • Kuester K, Kovar A, Lüpfert C, Brockhaus B, Kloft C (2008) Population pharmacokinetic data analysis of three phase I studies of matuzumab, a humanised anti-EGFR monoclonal antibody in clinical cancer development. Br J Cancer 98(5):900–906

    Article  Google Scholar 

  • Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  Google Scholar 

  • Li J, Nekka F (2007) A pharmacokinetic formalism explicitly integrating the patient drug compliance. J Pharmacokinet Pharmacodyn 34(1):115–139

    Article  Google Scholar 

  • Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532

    Article  Google Scholar 

  • Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72(1):1–10

    Article  Google Scholar 

  • Mehdi B (2015) Pharmacokinetics and toxicokinetics. CRC Press, Boca Raton

    Google Scholar 

  • Quartino AL, Karlsson MO, Lindman H, Friberg LE (2014) Characterization of endogenous G-CSF and the inverse correlation to chemotherapy-induced neutropenia in patients with breast cancer using population modeling. Pharm Res 31(12):3390–3403

    Article  Google Scholar 

  • Schnell S, Mendoza C (1997) Closed form solution for time dependent enzyme kinetics. J Theor Biol 187:207–212

    Article  Google Scholar 

  • Shi S (2014) Biologics: an update and challenge of their pharmacokinetics. Curr Drug Metab 15(3):271–290

    Article  Google Scholar 

  • Tang S, Xiao Y (2007) One-compartment model with Michaelis–Menten elimination kinetics and therapeutic window: an analytical approach. J Pharmacokinet Pharmacodyn 34:807–827

    Article  Google Scholar 

  • van der Graaf PH, Benson N, Peletier LA (2016) Topics in mathematical pharmacology. J Dyn Diff Equ 28:1337–1356

    Article  MathSciNet  MATH  Google Scholar 

  • Wong H, Chow TW (2017) Physiologically based pharmacokinetic modeling of therapeutic proteins. J Pharm Sci 106(9):2270–2275

    Article  Google Scholar 

  • Woo S, Krzyzanski W, Jusko WJ (2007) Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn 34(6):849–868

    Article  Google Scholar 

  • Wu X, Li J, Nekka F (2015) Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis–Menten kinetics. J Pharmacokinet Pharmacodyn 42:151–161

    Article  Google Scholar 

  • Wu X, Nekka F, Li J (2016) Steady-state volume of distribution of two-compartment models with simultaneous linear and saturated elimination. J Pharmacokinet Pharmacodyn 43(4):447–459

    Article  Google Scholar 

  • Wu X, Nekka F, Li J (2018) Mathematical analysis and drug exposure evaluation of pharmacokinetic models with endogenous production and simultaneous first-order and Michaelis–Menten elimination: the case of single dose. J Pharmacokinet Pharmacodyn 45(5):693–705

    Article  Google Scholar 

  • Yu RH, Cao YX (2017) A method to determine pharmacokinetic parameters based on andante constant-rate intravenous infusion. Sci Rep 7(1):13279

    Article  Google Scholar 

  • Zhao L, Shang EY, Sahajwalla CG (2012) Application of pharmacokinetics–pharmacodynamics/clinical response modeling and simulation for biologics drug development. J Pharm Sci 101(12):4367–4382

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by NSERC-Industrial Chair in Pharmacometrics—Novartis, Pfizer and Inventiv Health Clinical and FRQNT Projet d’équipe led by F. Nekka as well as NSERC and FRQNT (F.N. and J.L.). FRQNT Fellowship and NSFC (No. 11501358) hold by X.W. are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Introduction of X Function and Unique Real Branch in the First Quadrant in \(R^2\)

The aim of introduction of X function is to express the closed-form solution of a one-compartment PK open model exhibiting simultaneous first-order and Michaelis–Menten elimination (Wu et al. 2015). Specifically, the model is described as

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\mathrm{{d}}C(t)}{\mathrm{{d}}t}&{}=-k_\mathrm{el}C(t)-\frac{V_\mathrm{max}C(t)}{V_\mathrm{{d}}(K_\mathrm{{m}}+C(t))},\,\,t>0\\ C(0^+)&{}=D/V_\mathrm{{d}}, \end{array} \right. \end{aligned}$$
(A.1)

where D is an intravenous bolus dose, \(k_\mathrm{el}\) is the rate constant of the first-order elimination, \(V_\mathrm{max}\) and \(K_\mathrm{{m}}\) are the corresponding parameters of Michaelis–Menten elimination representing the maximum velocity of its kinetics and the concentration value at which 50% of \(V_\mathrm{max}\) is reached, and \(V_\mathrm{{d}}\) is the apparent volume of distribution.

Integrating Eq. A.1 gives rise to the following algebraic equation

$$\begin{aligned} \left( \frac{C(t)}{C_{\beta }}\right) ^{p_1}\left( \frac{C(t)}{C_{\beta }}+1\right) ^{p_2}=\left( \frac{C_0}{C_{\beta }}\right) ^{p_1}\left( \frac{C_0}{C_{\beta }}+1\right) ^{p_2} \mathrm{{e}}^{-t} \end{aligned}$$
(A.2)

where

$$\begin{aligned} C_{\beta }=K_\mathrm{{m}}+\frac{V_\mathrm{max}}{k_\mathrm{el}V_\mathrm{{d}}}>K_\mathrm{{m}},\,\,p_1=\frac{1}{k_\mathrm{el}}\frac{K_\mathrm{{m}}}{C_{\beta }}>0,\,\,p_2=\frac{1}{k_\mathrm{el}}\frac{C_{\beta }-K_\mathrm{{m}}}{C_{\beta }}>0. \end{aligned}$$

Using the definition of X function (see Definition 1), we are able to express C(t) as

$$\begin{aligned} C(t)=C_{\beta }\cdot X\left( \left( \frac{D/V_\mathrm{{d}}}{C_{\beta }}\right) ^{p_1} \left( \frac{D/V_\mathrm{{d}}}{C_{\beta }}+1\right) ^{p_2}\mathrm{{e}}^{-t},p_1,p_2\right) , \end{aligned}$$
(A.3)

For more details, refer to Wu et al. (2015).

Next, we show the proof of unique real branch of X function in the first quadrant in \({\mathbb {R}}^2\), where \(p>0\) and \(q>0\).

From the definition of X function, we denote

$$\begin{aligned} F(z, X)=(X(z,p,q))^p(X(z,p,q)+1)^q-z. \end{aligned}$$
(A.4)

In the scope of real number in the first quadrant in \({\mathbb {R}}^2\), namely for each \(z, X>0\), we can have

$$\begin{aligned} F_z(z,X)=-1,\quad \quad F_X(z,X)=z\left( \frac{p}{X}+\frac{q}{X+1}\right) \ne 0. \end{aligned}$$

By implicit function theorem, there is a unique real solution \(X(z,p,q)>0\) such that the equation \(X(z,p,q)^p(X(z,p,q)+1)^q=z\) is valid. Moreover, the derivative of X(zpq) with respect to z is given by

$$\begin{aligned} \frac{\mathrm{{d}}X(z,p,q)}{\mathrm{{d}}z}=-\frac{F_z(x,X)}{F_X(z,X)}=\frac{1}{z}\left( \frac{p}{X}+\frac{q}{X+1}\right) ^{-1}>0, \end{aligned}$$

which implies the function X(zpq) is increasing with the variable z in the first quadrant.

Appendix B: Proof of the Relationship of Eq. 35

To prove Eq. 35, we define a continuous function as

$$\begin{aligned}&h(x){\mathop {=}\limits ^{def}}\left( 1+\frac{\tfrac{1}{2}D/V_\mathrm{{d}}}{C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-x}\right) ^2 \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x}\right) ^{-1},\nonumber \\&\quad x\in \left[ 0, C_{\beta }^{en}+C_\mathrm{hs}\right] , \end{aligned}$$
(C.1)

where \(C_{\beta }^{en}\) and \(C_\mathrm{hs}\) are concentrations defined in Sect. 2.3, D is dose amount, \(V_\mathrm{{d}}\) is the apparent volume of distribution, \(C^{tr}_{ss}(D,\tau )\) and \(C^{tr}_{ss}(\tfrac{D}{2},\tfrac{\tau }{2})\) are respective steady- state trough concentrations which are greater than \(C_\mathrm{hs}\).

Taking derivative of h(x) with respect to the variable x yields

$$\begin{aligned} h'(x)=\frac{D}{V_\mathrm{{d}}} \left( 1+\frac{\tfrac{1}{2}D/V_\mathrm{{d}}}{C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-x}\right) \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x}\right) ^{-2}\cdot g,\nonumber \\ \end{aligned}$$
(C.2)

where \(g=g_1-g_2\) with

$$\begin{aligned} g_1=\frac{1}{\big (C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-x\big )^2} \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x}\right) \end{aligned}$$

and

$$\begin{aligned} g_2=\frac{1}{\big (C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x\big )^2} \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-x}\right) . \end{aligned}$$

Considering the right hand of \(h'(x)\), the left portion before g is positive; thus, the sign of \(h'(x)\) depends on that of g alone. Furthermore, g can be rewritten as

$$\begin{aligned} g=\frac{1}{\big (C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-x\big )^2(C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x)^2}(w_1-w_2) \end{aligned}$$

with

$$\begin{aligned} w_1=\left( \tfrac{D}{V_\mathrm{{d}}}+C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x\right) \left( C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-x\right) \end{aligned}$$

and

$$\begin{aligned} w_2=\left( \tfrac{D}{V_\mathrm{{d}}}+C^{tr}_{ss}(\tfrac{D}{2},\tfrac{\tau }{2})+C_{\beta }^{en}-x\right) \left( C^{tr}_{ss}(\tfrac{D}{2},\tfrac{\tau }{2})+C_{\beta }^{en}-x\right) . \end{aligned}$$

Since \(C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})>C^{tr}_{ss}(D,\tau )>C_\mathrm{hs}\) and \(x\in [0,C_{\beta }^{en}+C_\mathrm{hs}]\), we have \(0<w_1<w_2\), and thus, g is negative. Therefore, h(x) is a decreasing function with respect to its variable \(x\in [0,C_{\beta }^{en}+C_\mathrm{hs}]\). Subsequently, we have

$$\begin{aligned} \begin{aligned} h(C_{\beta }^{en}+C_\mathrm{hs})&=\left( 1+\frac{\tfrac{1}{2}D/V_\mathrm{{d}}}{C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})+C_{\beta }^{en}-(C_{\beta }^{en}+C_\mathrm{hs})}\right) ^2\\&\quad \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(D,\tau )+C_{\beta }^{en}-(C_{\beta }^{en}+C_\mathrm{hs})}\right) ^{-1}\\&=\left( 1+\frac{\tfrac{1}{2}D/V_\mathrm{{d}}}{C^{tr}_{ss}(\frac{D}{2},\frac{\tau }{2})-C_\mathrm{hs}}\right) ^2 \left( 1+\frac{D/V_\mathrm{{d}}}{C^{tr}_{ss}(D,\tau )-C_\mathrm{hs}}\right) ^{-1}\\&<h(0)=\left( 1+\tfrac{1}{2}A\right) ^2 \left( 1+B\right) ^{-1}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Nekka, F. & Li, J. Analytical Solution and Exposure Analysis of a Pharmacokinetic Model with Simultaneous Elimination Pathways and Endogenous Production: The Case of Multiple Dosing Administration. Bull Math Biol 81, 3436–3459 (2019). https://doi.org/10.1007/s11538-019-00651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00651-8

Keywords

Mathematics Subject Classification

Navigation