Skip to main content

Advertisement

Log in

Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model

  • Special Issue: Mathematical Epidemiology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting–questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number \(\mathcal R_0\) and show that if \(\mathcal R_0\le 1\), the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If \(\mathcal R_0>1\), the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of \(\mathcal R_0\) and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhavan D, Musgrove P, Abrantes A, d’A Gusmão R (1999) Cost-effective malaria control in Brazil: cost-effectiveness of a malaria control program in the Amazon basin of Brazil, 1988–1996. Soc Sci Med 49(10):1385–1399

    Google Scholar 

  • Atieli HE, Zhou G, Afrane Y, Lee M-C, Mwanzo I, Githeko AK, Yan G (2011) Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasites Vectors 4(1):113

    Google Scholar 

  • Awoleye OJ, Thron C (2016) Improving access to malaria rapid diagnostic test in Niger state, Nigeria: an assessment of implementation up to 2013. Malar Res Treat 2016:7436265. https://doi.org/10.1155/2016/7436265

    Article  Google Scholar 

  • Barbour AD (1978) Macdonald’s model and the transmission of bilharzia. Trans R Soc Trop Med Hyg 72(1):6–15

    Google Scholar 

  • Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED (2010) Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza province, Kenya. Malar J 9(1):62

    Google Scholar 

  • Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ (2008) Integrated vector management for malaria control. Malar J 7(1):S4

    Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences, volume 9 of classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia. Revised reprint of the 1979 original

  • Besansky NJ, Hill CA, Costantini C (2004) No accounting for taste: host preference in malaria vectors. Trends Parasitol 20(6):249–251

    Google Scholar 

  • Bhatia NP, Szegö GP (1970) Stability theory of dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  • Carnevale P, Vincent R (2009) Les anophèles, Biologie, transmission du Paludisme et lutte antivectorielle. IRD, Wellington

    Google Scholar 

  • Chitnis N (2005) Using mathematical models in controlling the spread of malaria. PhD thesis, University of Arizona

  • Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272

    MathSciNet  MATH  Google Scholar 

  • Ehiri JE, Anyanwu EC (2004) Mass use of insecticide-treated bednets in malaria endemic poor countries: public health concerns and remedies. J Public Health Policy 25(1):9–22

    Google Scholar 

  • Floore TG (2006) Mosquito larval control practices: past and present. J Am Mosq Control Assoc 22(3):527–533

    Google Scholar 

  • Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ, Diatta M, Konate L, Faye F, Rogier C, Trape JF (1997) High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56:247–53

    Google Scholar 

  • Gollin D, Zimmermann C (2007) Malaria: disease impacts and long-run income differences. IZA Discussion Papers 2997, Institution for the Study of Labor (IZA), August 2007

  • Guo H, Li MY, Shuai Z (2006) Global stability of the endemic equilibrium of multigroup models. Can Appl Math Q 14(3):259–284

    MathSciNet  MATH  Google Scholar 

  • Guo H, Li MY, Shuai Z (2008) A graph-theoretic approach to the method of global Lyapunov functions. Proc Am Math Soc 136:2793–2802

    MathSciNet  MATH  Google Scholar 

  • Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS et al (2003) Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68(4-suppl):121–127

    Google Scholar 

  • Jacquez JA, Simon CP (1993) Qualitative theory of compartmental systems. SIAM Rev 35(1):43–79

    MathSciNet  MATH  Google Scholar 

  • Kamgang JC, Sallet G (2008) Computation of threshold conditions for epidemiological models and global stability of the disease free equilibrium. Math Biosci 213(1):1–12

    MathSciNet  MATH  Google Scholar 

  • Kamgang JC, Kamla VC, Tchoumi SY (2014) Modeling the dynamics of malaria transmission with bed net protection perspective. Appl Math 5(19):3156–3205, 11

    Google Scholar 

  • Keiser J, Singer BH, Utzinger J (2005) Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5(11):695–708

    Google Scholar 

  • Korobeinikov A (2001) A Lyapunov function for Leslie–Gower predator–prey models. Appl Math Lett 14(6):697–699

    MathSciNet  MATH  Google Scholar 

  • Korobeinikov A (2004) Lyapunov functions and global properties for SEIR and SEIS models. Math Med Biol 21:75–83

    MATH  Google Scholar 

  • Korobeinikov A, Maini PK (2004) A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng 1(1):57–60

    MathSciNet  MATH  Google Scholar 

  • Korobeinikov A, Wake GC (2002) Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett 15(8):955–960

    MathSciNet  MATH  Google Scholar 

  • LaSalle JP (1968) Stability theory for ordinary differential equations. J Differ Equ 41:57–65

    MathSciNet  MATH  Google Scholar 

  • LaSalle JP (1976a) The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia. With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein, Regional Conference Series in Applied Mathematics

  • LaSalle JP (1976b) Stability theory and invariance principles. In: Dynamical systems (Proceedings of the international Symposium, Brown University, Providence, RI, 1974), vol I. Academic Press, New York, pp 211–222

  • Lawrance CE, Croft AM (2004) Do mosquito coils prevent malaria? A systematic review of trials. J Travel Med 11(2):92–96

    Google Scholar 

  • Li J, Blakeley D, Smith RJ (2011) The failure of \(R_0\). Comput Math Method Med 2011:1–17

    MATH  Google Scholar 

  • Luenberger DG (1979) Introduction to dynamic systems. Theory, models, and applications. Wiley, New York

    MATH  Google Scholar 

  • Ma Z, Liu J, Li J (2003) Stability analysis for differential infectivity epidemic models. Nonlinear Anal Real World Appl 4(5):841–856

    MathSciNet  MATH  Google Scholar 

  • Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ (2015) Mosquito repellents for malaria prevention. Cochrane Database Syst Rev 2018(2):CD011595. https://doi.org/10.1002/14651858.CD011595.pub2

  • McCluskey CC (2003) A model of HIV/AIDS with staged progression and amelioration. Math Biosci 181(1):1–16

    MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2005) A strategy for constructing Lyapunov functions for non-autonomous linear differential equations. Linear Algebra Appl 409:100–110

    MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2006) Lyapunov functions for tuberculosis models with fast and slow progression. Math Biosci Eng 3(4):603–614

    MathSciNet  MATH  Google Scholar 

  • McCluskey CC (2008) Global stability fo a class of mass action systems allowing for latency in tuberculosis. J Math Anal Appl 338:518–535

    MathSciNet  MATH  Google Scholar 

  • McCluskey CC, van den Driessche P (2004) Global analysis of two tuberculosis models. J Dyn Differ Equ 16(1):139–166

    MathSciNet  MATH  Google Scholar 

  • Menze BD, Riveron JM, Ibrahim SS, Irving H, Antonio-Nkondjio C, Awono-Ambene PH, Wondji CS (2016) Multiple insecticide resistance in the malaria vector anopheles funestus from Northern Cameroon is mediated by metabolic resistance alongside potential target site insensitivity mutations. PLoS One 11(10):e0163261

    Google Scholar 

  • Morel CM, Lauer JA, Evans DB (2005) Cost effectiveness analysis of strategies to combat malaria in developing countries. Bmj 331(7528):1299

    Google Scholar 

  • Ngwa AG, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito populations. Math Comput Model 32:747–763

    MathSciNet  MATH  Google Scholar 

  • Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 4(4):

  • Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27(2):91–98

    Google Scholar 

  • Rogier C, Tall A, Diagne N, Fontenille D, Spiegel A, Trape JF (2000) Plasmodium falciparum clinical malaria: lessons from longitudinal studies in Senegal. Parassitologia 41(1–3):255–259

    Google Scholar 

  • Ross R (1911) The prevention of malaria. John Murray, London

    Google Scholar 

  • Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF (2011) Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10(1):80

    Google Scholar 

  • Russell CL, Sallau A, Emukah E, Graves PM, Noland GS, Ngondi JM, Ozaki M, Nwankwo L, Miri E, McFarland DA et al (2015) Determinants of bed net use in southeast Nigeria following mass distribution of LLINs: implications for social behavior change interventions. PLoS One 10(10):e0139447

    Google Scholar 

  • Sharp BL, Kleinschmidt I, Streat E, Maharaj R, Barnes KI, Durrheim DN, Ridl FC, Morris N, Seocharan I, Kunene S et al (2007) Seven years of regional malaria control collaboration Mozambique, South Africa, and Swaziland. Am J Trop Med Hyg 76(1):42–47

    Google Scholar 

  • Shillcutt S, Morel C, Goodman C, Coleman P, Bell D, Whitty CJM, Mills A (2008) Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy. Bull World Health Organ 86:101–110

    Google Scholar 

  • Tewa JJ, Dimi JL, Bowong S (2009) Lyapunov functions for a dengue disease transmission model. Chaos Solitons Fractals 39(2):936–941

    MathSciNet  MATH  Google Scholar 

  • Tewa JJ, Fokouop R, Mewoli B, Bowong S (2012) Mathematical analysis of a general class of ordinary differential equations coming from within-hosts models of malaria with immune effectors. Appl Math Comput 218(14):7347–7361

    MathSciNet  MATH  Google Scholar 

  • Utzinger J, Tozan Y, Singer BH (2001) Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health 6(9):677–687

    Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    MathSciNet  MATH  Google Scholar 

  • Walker K, Lynch M (2007) Contributions of anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol 21(1):2–21

    Google Scholar 

  • White MT, Conteh L, Cibulskis R, Ghani AC (2011) Costs and cost-effectiveness of malaria control interventions—a systematic review. Malar J 10(1):337

    Google Scholar 

  • WHO (2013) World malaria report 2013. Technical report, WHO, Dec 2013

  • Wilson AL et al (2011) A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment of malaria in children (IPTc). PloS ONE 6(2):e16976

    Google Scholar 

  • World Health Organization (2015) World malaria report 2014. World Health Organization, Geneva

    Google Scholar 

  • Worrall E, Fillinger U (2011) Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malar J 10(1):338

    Google Scholar 

  • Yohannes M, Haile M, Ghebreyesus TA, Witten KH, Getachew A, Byass P, Lindsay SW (2005) Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia? Trop Med Int Health 10(12):1274–1285

    Google Scholar 

  • Zhu L, Müller GC, Marshall JM, Arheart KL, Qualls WA, Hlaing WM, Schlein Y, Traore SF, Doumbia S, Beier JC (2017) Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J 16(1):266

    Google Scholar 

  • Zongo P (2009) Modélisation mathématique de la dynamique de transmission du paludisme. PhD thesis, Universite de Ouagadougou

Download references

Acknowledgements

The second author would like to thank the Fulbright U.S. Scholar program and the International Mathematicians Union’s VLP program for supporting visits to ENSAI which made this research possible. The authors would also like to thank the reviewers for helpful comments that led to significant improvements in the quality and clarity of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Claude Kamgang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

UMI 209 IRD/UPMC UMMISCO, Bondy, Projet MASAIE INRIA Grand Est, France, LIRIMA – GRIMCAPE, Cameroun.

Appendices

Useful Definitions and Results

In order to make this paper self-contained, this appendix gives definitions and summarizes prior results from the literature that were used in the above discussion. Proofs of all results in this section may be found in McCluskey (2008) or Kamgang and Sallet (2008), as indicated.

1.1 Useful Definitions

Definition A1

[Metzler matrix, Metzler stable matrix (Berman and Plemmons 1994; Jacquez and Simon 1993; Luenberger 1979)] A given \(n\times n\) real matrix is said to be a Metzler matrix if all its off-diagonal terms are nonnegative. The matrix is called Metzler stable if in addition all of the eigenvalues have negative real parts.

Note that a square matrix \(\mathbf A\) is a Metzler matrix if and only if \(-\mathbf A\) is a Z-matrix, and \(\mathbf A\) is Metzler stable if and only if \(-\mathbf A\) is a M-matrix. This paper makes use of the fact (which is not difficult to prove) that the positive cone is invariant for every dynamical system described by a system of ordinary differential equations whose Jacobian matrix is a Metzler matrix.

Definition A2

(Irreducible matrix) A given \(n\times n\) matrix \(\mathbf A\) is said to be a reducible matrix if there exists a permutation matrix \(\mathbf P\) such that \(\mathbf P^{\mathbf T}\,\mathbf A\,\mathbf P\) has block matrix form: \(\mathbf P^{\mathbf T}\,\mathbf A\,\mathbf P=\left( \begin{array}{cc}\mathbf A_1 &{}\quad \mathbf A_{12}\\ \mathbf 0 &{}\quad \mathbf A_{2} \end{array}\right) \), where \(\mathbf A_1\) and \(\mathbf A_2\) are square matrices. A matrix \(\mathbf A\) that is not reducible is said to be irreducible.

Irreducibility of \(\mathbf A\) can be checked using the directed graph associated with \(\mathbf A = (a_{k\,j} )\). This graph (denoted as \(G(\mathbf A)\)) has vertices \({1, 2, \dots , n}\), and the directed arc \((k,\; j)\) from k to j is in \(G(\mathbf A)\) iff \(a_{k\,j}\ne 0\). \(G(\mathbf A)\) is said to be strongly connected if any two distinct vertices of \(G(\mathbf A)\) are joined by an oriented path. The matrix \(\mathbf A\) is irreducible if and only if \(G(\mathbf A)\) is strongly connected (Guo et al. 2008).

1.2 Arithmetic–Geometric Means Inequality and Consequences

In demonstrating that the Lyapunov derivative is nonpositive (see Section (4.2)), a key tool is the arithmetic–geometric means inequality, stated as follows:

Lemma A1

(Weighted AM-GM) Let the positive numbers \(z_1,\dots ,z_d\) and the positive weights \(w_1,\dots ,w_d\) be given. Set \(w = w_1+\cdots +w_d\). If \(w>0\), then

$$\begin{aligned} \root w \of {z_1^{w_1}\cdots z_d^{w_d}} \le \frac{w_1z_1+\cdots +w_dz_d}{w} \end{aligned}$$

Furthermore, exact equality occurs iff \(z_1=\cdots =z_d\)

The classical weighted AM–GM is more general than this lemma.

An immediate consequence of weighted AM–GM is:

Corollary A1

(McCluskey 2008) Let \(z_1,\dots ,z_d\) be positive real numbers such that their product is 1. Then,

$$\begin{aligned} d - z_1 -\cdots - z_d\le 0. \end{aligned}$$

Furthermore, exact equality occurs iff \(z_1=\cdots =z_d\).

This is obtained from Lemma A1 by choosing \(w_i=1\) for all 1.

Another useful consequence is

Corollary A2

Let the positive numbers \(z_1,\dots ,z_d\) and the positive weights \(w_1,\dots ,w_d\) be given. Assume for a given i, \(1\le i \le d\) there is a \(v\in \mathbb R\) such that \({z_i}^v=z_1^{w_1}\cdots z_{i-1}^{w_{i-1}}z_{i+1}^{w_{i+1}}\cdots z_d^{w_d}\). Set \(w = w_1+\cdots +w_d\). If \(w>0\) and \((z_i-1)(w+v)\le 0\), then

$$\begin{aligned} w - w_1z_1 -\cdots - w_dz_d\le 0. \end{aligned}$$

Furthermore, exact equality occurs iff \(z_1=\cdots =z_d\).

Proof

For numbers and associated weights as stated in Corollary, applying Lemma A1 gives

$$\begin{aligned} z_i^{\frac{w_i+v}{w}}\le \frac{w_1z_1+\cdots +w_dz_d}{w}; \end{aligned}$$

since for given x and \(\beta \) positive real numbers and \(\alpha \) a real number with \(|\alpha |<\beta \) we have the relation \(1\le x^{\frac{\alpha }{\beta }}\) iff \(x\le 1\wedge \alpha \ge 0\) or \(x\ge 1\wedge \alpha \le 0\), which holds iff \((x-1)\alpha \le 0\). Thus, assuming \((z_i-1)(w_i+v)\le 1\), since this is equivalent to \(1\le z_i^{\frac{w_i+v}{w}}\), the result follows straightforwardly. \(\square \)

1.3 Results on the Global Asymptotic Stability (GAS) of the DFE of Epidemiological Model

Theorem A1 and Proposition A1 given in this section are key tools in demonstrating Theorem 4.1 in Sect. 4.1 and Proposition 3.5 in Sect. 3.4, respectively.

Theorem 4.1 is conventionally proven by constructing an adequate Lyapunov function for the model at the equilibrium concerned. Theorem A1 establishes the existence of such a Lyapunov function in cases similar to the situation in this paper.

Theorem A1

(Kamgang and Sallet 2008) Consider the system

$$\begin{aligned} \left\{ \begin{array}{ll}\dot{\mathbf x}_S = \mathbf A_S(\mathbf x)\,.\, \left( \mathbf x_S - \mathbf x^*_S\right) + \mathbf A_{S,I}(\mathbf x)\,.\,\mathbf x_I \\ \dot{\mathbf x}_I = \mathbf A_I(\mathbf x)\,.\,\mathbf x_I \end{array}\right. \end{aligned}$$
(86)

defined on a positively invariant set \(\Omega \subset \mathbb R_+^{n_S\times n_I}\). Given that:

h1:

The system is dissipative on \(\Omega \);

h2:

The equilibrium \(\mathbf x_S^*\) of the subsystem \(\dot{\mathbf x}_S = \mathbf A_S\left( \mathbf x_S,\;\mathbf 0\right) \,.\,(\mathbf x_S-\mathbf x^*_S)\) of system (86) is globally asymptotically stable on the canonical projection of \(\Omega \) on \(\mathbb R_+^{n_S}\);

h3:

The matrix \(\mathbf A_I(\mathbf x)\) is a Metzler matrix and irreducible for each \(\mathbf x\in \Omega \);

h4:

There is an upper-bound matrix \(\overline{\mathbf A}_I\) (in the sense of point-wise order) for the set of \(n_I\times n_I\) square matrices \(\mathfrak {M} = \{\mathbf A_I(\mathbf x)\;/\;\mathbf x\in \Omega \}\) with the property that either \(\overline{\mathbf A}_I\not \in \mathfrak {M}\) or if \(\overline{\mathbf A}_I \in \mathfrak {M}\), then for any \(\overline{\mathbf x}\in \Omega \) such that \(\overline{\mathbf A}_I = \mathbf A_I(\overline{\mathbf x})\), we have \(\overline{\mathbf x}\in \mathbb R_+^{n_S}\times \{\mathbf 0\}\);

h5:

\(\alpha (\overline{\mathbf A}_I)\le 0\).

Then, the DFE \(\mathbf x^*\) is GAS for the system (86) in \(\overline{\Omega }\).

Proposition A1 shows that the Metzler stability of matrix \(\mathbf M\) is equivalent to the Metzler stability of two smaller matrices, which if properly chosen may be easier to compute with.

Proposition A1

(Kamgang and Sallet 2008) Let \(\mathbf M\) be a Metzler matrix, with block decomposition \(\mathbf M=\left( \begin{array}{cc} \mathbf {A} &{}\quad \mathbf {B}\\ \mathbf {C} &{}\quad \mathbf {D}\\ \end{array}\right) \), where \( \mathbf {A}\) and \( \mathbf {D}\) are square matrices.

Then, \(\mathbf M\) is Metzler stable if and only if \(\mathbf A\) and \( \mathbf D - \mathbf C \mathbf A^{-1} \mathbf B \) (or \(\mathbf D\) and \(\mathbf A-\mathbf B \mathbf D^{-1} \mathbf C\)) are Metzler stable.

The Lyapunov Function in the Proof of Theorem 4.2

The Lyapunov function technique is commonly used in the study of the stability of endemic equilibria of epidemiological systems in the literature (Guo et al. 2006, 2008; Korobeinikov 2001, 2004; Korobeinikov and Maini 2004; Korobeinikov and Wake 2002; Ma et al. 2003; McCluskey 2006, 2003, 2005; McCluskey and van den Driessche 2004; Tewa et al. 2009, 2012). For the current model, we define a function \(V_{ee}\) on the space state of the model, \(\left( \mathbb R_{>0}\right) ^u\):

$$\begin{aligned} V_{ee}(\mathbf x)\equiv & {} \left( S_q-S^\dagger _q\ln S_q\right) +\,\tilde{\sigma }_r\left( S_r-S^\dagger _r\ln S_r\right) +\, \sigma _r^{(1)}\left( E^{(1)}_r-E^{(1)\dagger }_r\ln E^{(1)}_r\right) \nonumber \\&+\,\displaystyle \sum _{j=1}^\ell \left( \sigma _q^{(j)}\left( E^{(j)}_q-E^{(i)\dagger }_q\ln E^{(j)}_q\right) +\sigma _r^{(j+1)}\left( E^{(j+1)}_r-E^{(j+1)\dagger }_r\ln E^{(j+1)}_r\right) \right) \nonumber \\&+\,\tau _q\left( I_q-I_q^{\dagger }\ln \,I_q\right) \nonumber \\&+\tau _r\left( I_r-I_r^{\dagger }\ln \,I_r\right) +\,\displaystyle \sum _{i=0}^{n}\vartheta _i\left( S_i-S_i^{\dagger }\ln \,S_i\right) +\,\displaystyle \sum _{i=0}^{n}\upsilon _i\left( I_i-I_i^{\dagger }\ln \,I_i\right) , \end{aligned}$$
(87)

where the coefficients \(\tilde{\sigma }_r\); \(\sigma _r^{(j)}\) for \(j=1,2,\dots , \ell + 1\); \(\sigma _q^{(j)}\) for \(j=1,2,\dots , \ell \); \(\tau _r\); \(\tau _q\); \(\upsilon _i\), \(\vartheta _i\), for \(i=0,1,\dots , n\) are positive constants to be determined such that the derivative of \(V_{ee}\) along the trajectories of system (1) is negative. This form of the Lyapunov function and some of the techniques used in our solution were inspired by Guo et al. (2006, 2008), who use a graph-theoretic approach to compute the derivative of the Lyapunov function. In the system of Guo et al., each group has the same compartmental description, as well as the same mode of influence exchange with other groups. (Susceptible individuals of a given group are transferred to the next class of the group via contact with all infectious individuals in the system.) In our model, not all groups have the same compartmental description: host groups have an SIS structure, while the vector group is more complex. Furthermore, the mode of exchanging influence between groups is also different: there is no exchange of influence between host groups; the vector group influences host groups through contact of susceptible hosts with infectious questing vectors; and all host groups influence questing vectors.

The function \(V_{ee}\) defined in (87) is \(\mathcal C^\infty \) and is positive definite on \(\left( \mathbb R_{>0}\right) ^u\) as long as all coefficients are positive. Its derivative along the trajectories of the system (1) is:

$$\begin{aligned} \frac{\mathrm{d}V_{ee}}{\mathrm{d}\,t}(\mathbf x(t))= & {} \left( 1-\frac{S^\dagger _q}{S_q}\right) \left( \Gamma -(d_q+r_\mathrm{suc}) S_q+\delta S_r\right) +\, \tilde{\sigma }_r\left( 1-\frac{S^{\dagger }_r}{S_r}\right) \left( \left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q-\frac{\delta }{f_r} S_r \right) \\&+\, \sigma _r^{(1)}\left( 1-\frac{E^{(1)\dagger }_r}{E^{(1)}_r}\right) \left( r_\mathrm{inf}S_q-\frac{\delta }{f_r} E^{(1)}_r \right) \\&+\,{\displaystyle \sum _{j=1}^\ell }\sigma _q^{(j)} \left( 1-\frac{E^{(j)\dagger }_q}{E^{(j)}_q}\right) \left( \delta E^{(j)}_r - \frac{r_\mathrm{suc}}{f_q}E^{(j)}_q \right) \\&+\,{\displaystyle \sum _{j=1}^\ell }\sigma _r^{(j+1)} \left( 1-\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}\right) \left( r_\mathrm{suc}E^{(j)}_q-\frac{\delta }{f_r}E^{(j+1)}_r \right) \\&+\,\tau _r\left( 1-\frac{I^\dagger _r}{I_r}\right) \left( r_\mathrm{suc}I_q - \frac{\delta }{f_r}I_r \right) +\,\tau _q\left( 1-\frac{I^\dagger _q}{I_q}\right) \left( \delta E^{(\ell + 1)}_r - \frac{r_\mathrm{suc}}{f_q} I_q +\delta I_r \right) \\&+\,{\displaystyle \sum _{i=0}^{n}}\vartheta _i\left( 1-\frac{S^\dagger _i}{S_i}\right) \left( \Lambda _i+\tilde{\nu _i}H_i - \left( \nu _i+a\,\varphi _i\frac{I_q}{H}\right) S_i +\gamma _i I_i\right) \\&+\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i\left( 1-\frac{I^\dagger _i}{I_i}\right) \left( \frac{a}{H}\,\varphi _iS_i I_q - (\nu _i+\gamma _i)I_i \right) . \end{aligned}$$

Since according to Proposition 3.4 we may restrict ourselves to \(\mathbf x \in \Omega \), we have \(H_i=S_i+I_i=H^*_i\) for each i. Furthermore, from Table 3, we find that \(r_\mathrm{suc}\), d and \(f_q\), and \(h_{i} \) are all time-independent: hence, we may write \(r_\mathrm{suc}^*=r_\mathrm{suc}\), \(d^*_q=d_q\), \(f^*_q=f_q\). After substituting \(\Gamma =(d_q+r_\mathrm{suc}^*)S_q^\dagger -\delta S_r^\dagger \), \(\Lambda _i = a\varphi _i\frac{I^\dagger _q}{H^*}S^\dagger _i + (\nu _i-\tilde{\nu }_i)S^\dagger _i - (\gamma _i + \tilde{\nu }_i)I^\dagger _i\) and rearranging, we obtain

$$\begin{aligned} \dfrac{\mathrm{d}V_{ee}}{\mathrm{d}\,t}(\mathbf x(t))= & {} d_qS_q^\dagger \left( 2-\frac{S_q^\dagger }{S_q}-\frac{S_q}{S_q^\dagger }\right) +r_\mathrm{suc}^\dagger S_q^\dagger -r_\mathrm{suc}^\dagger S_q^\dagger \frac{S^\dagger _q}{S_q}-r_\mathrm{suc}S_q+r_\mathrm{suc}S_q^\dagger \\&+\, \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }\right) +\,\tilde{\sigma }_r\left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q \left( 1 - \frac{S^\dagger _r}{S_r} \right) \\&+\,\left( \frac{\tilde{\sigma }_r}{f_r}-1\right) \delta \left( S_r^\dagger -S_r\right) +\, \sigma _r^{(1)}r_\mathrm{inf}S_q \left( 1-\frac{E^{(1)\dagger }_r}{E^{(1)}_r}\right) \\&+\, \sigma _r^{(1)}\left( \frac{\delta }{f_r}E^{(1)\dagger }_r- \frac{\delta }{f_r}E^{(1)}_r\right) +\,{\displaystyle \sum _{i=1}^l} \sigma _q^{(i)} \delta E^{(i)}_r\left( 1-\frac{E^{(i)\dagger }_q}{E^{(i)}_q}\right) \\&+\,{\displaystyle \sum _{j=1}^{\ell }} \sigma _q^{(j)}\left( \frac{r_\mathrm{suc}}{f_q}E^{(j)\dagger }_q- \frac{r_\mathrm{suc}}{f_q}E^{(j)}_q \right) \\&+\,{\displaystyle \sum _{j=1}^{\ell }}\sigma _r^{(j+1)}E^{(j)}_qr_\mathrm{suc}\left( 1-\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}\right) +\,{\displaystyle \sum _{j=1}^{\ell }}\sigma _r^{(j+1)}\left( \frac{\delta }{f_r}E^{(j+1)\dagger }_r-\frac{\delta }{f_r}E^{(j+1)}_r\right) \\&+\,\tau _q\left( E^{(\ell + 1)}_r + I_r\right) \delta \left( 1-\frac{I^\dagger _q}{I_q}\right) +\,\tau _q\left( \frac{r_\mathrm{suc}}{f_q}I_q^\dagger - \frac{r_\mathrm{suc}}{f_q}I_q \right) \\&+\,\tau _r r_\mathrm{suc}I_q \left( 1- \frac{I^\dagger _r}{I_r} \right) +\,\tau _r \left( \frac{\delta }{f_r}I_r^\dagger - \frac{\delta }{f_r}I_r\right) \\&+\,{\displaystyle \sum _{i=0}^{n}}\vartheta _i\left( \nu _i - \tilde{\nu }_i\right) S^\dagger _i \left( 2-\frac{S^\dagger _i}{S_i} \right) - \,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \nu _i - \tilde{\nu }_i\right) H_i \\&+\,{\displaystyle \sum _{i=0}^{n}}(\upsilon _i(\nu _i+\gamma _i) - \vartheta _i\left( \gamma _i+\tilde{\nu }_i\right) ) I^\dagger _i -\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i} \\&+ \,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \gamma _i+\tilde{\nu }_i\right) I^\dagger _i \frac{S^\dagger _i}{S_i} +\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i +\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I_q}{H} S^\dagger _i-\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i\frac{S^\dagger _i}{S_i} \\&+\,{\displaystyle \sum _{i=0}^{n}} (\upsilon _i - \vartheta _i) \left( a\,\varphi _i\frac{I_q}{H} S_i - (\gamma _i + \nu _i)I_i\right) -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _ia \varphi _i\frac{I_q}{H}S_i\frac{I^\dagger _i}{I_i} \end{aligned}$$

We may write

$$\begin{aligned} \dfrac{\mathrm{d}V_{ee}}{\mathrm{d}\,t}(\mathbf x(t)) = d_qS_q^\dagger \left( 2-\frac{S_q^\dagger }{S_q}-\frac{S_q}{S_q^\dagger }\right) + F(\mathbf x), \end{aligned}$$
(88)

where

$$\begin{aligned} F(\mathbf x)= & {} r_\mathrm{suc}^\dagger S_q^\dagger \left( 1-\frac{S^\dagger _q}{S_q}\right) -r_\mathrm{suc}S_q+r_\mathrm{suc}S_q^\dagger + \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}+\frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }-1\right) \\&+\,\tilde{\sigma }_r\left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q \left( 1 - \frac{S^\dagger _r}{S_r} \right) +\,\tilde{\sigma }_r\frac{\delta }{f_r} S^\dagger _r\left( 1-\frac{S_r}{S_r^\dagger }\right) \\&+ \, \sigma _r^{(1)}r_\mathrm{inf}S_q \left( 1-\frac{E^{(1)\dagger }_r}{E^{(1)}_r}\right) +\,\delta {\displaystyle \sum _{j=1}^\ell }\left( E^{(j)\dagger }_r \left( \frac{\sigma _r^{(1)}}{f_r}- \sigma _q^{(j)}\frac{E^{(j)}_r}{E^{(j)\dagger }_r}\frac{E^{(j) \dagger }_q}{E^{(j)}_q}\right) +\, \left( \sigma _q^{(j)} -\,\frac{\sigma _r^{(j)}}{f_r} \right) E^{(j)}_r \right) \\&+\,\delta \left( \tau _q -\,\frac{\sigma _r^{(\ell + 1)}}{f_r} \right) E^{(\ell + 1)}_r +\,\delta E^{(\ell + 1)\dagger }_r \left( \frac{\sigma _r^{(\ell + 1)}}{f_r}- \tau _q\frac{E^{(\ell + 1)}_r}{E^{(\ell + 1)\dagger }_r}\frac{I^{ \dagger }_q}{I_q}\right) \\&+\, \delta \left( \tau _q -\frac{\tau _r}{f_r} \right) I_r +\, \delta I^\dagger _r\left( \frac{\tau _r}{f_r}-\tau _q \frac{I_r}{I^\dagger _r}\frac{I^\dagger _q}{I_q}\right) \\&+\,r_\mathrm{suc}{\displaystyle \sum _{j=1}^{\ell }}\left( E^{(j)\dagger }_q \left( \frac{\sigma _q^{(j)}}{f_q}-\sigma _r^{(j+1)}\frac{E^{(j)}_q}{E^{(j)\dagger }_q}\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r} \right) +\, \left( \sigma _r^{(j+1)}- \frac{\sigma _q^{(j)}}{f_q}\right) E^{(j)}_q\right) \\&+\, r_\mathrm{suc}I^\dagger _q \left( \frac{\tau _q}{f_q}- \tau _r\frac{I_q}{I^\dagger _q}\frac{I^\dagger _r}{I_r} \right) + \, r_\mathrm{suc}I_q\left( \tau _r- \frac{\tau _q}{f_q}\right) \\&+\,{\displaystyle \sum _{i=0}^{n}}\vartheta _i\left( \nu _i - \tilde{\nu }_i\right) S^\dagger _i \left( 2-\frac{S^\dagger _i}{S_i} \right) - \,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \nu _i - \tilde{\nu }_i\right) H_i +\,{\displaystyle \sum _{i=0}^{n}}(\upsilon _i\nu _i - \vartheta _i\tilde{\nu }_i ) I^\dagger _i \\&-\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i} + \,{\displaystyle \sum _{i=0}^{n}} \vartheta _i\left( \gamma _i+\tilde{\nu }_i\right) I^\dagger _i \frac{S^\dagger _i}{S_i} \\&+\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i +\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I_q}{H} S^\dagger _i-\,{\displaystyle \sum _{i=0}^{n}} \vartheta _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i\frac{S^\dagger _i}{S_i} \\&+\,{\displaystyle \sum _{i=0}^{n}} (\upsilon _i - \vartheta _i) \left( a\,\varphi _i\frac{I_q}{H} S_i - (\gamma _i + \nu _i)I_i + \gamma _iI^\dagger _i\right) -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _ia \varphi _i\frac{I_q}{H}S_i\frac{I^\dagger _i}{I_i}. \end{aligned}$$

Note that \(\frac{\mathrm{d}V_{ee}}{\mathrm{d}\,t}(\mathbf x(t)) \le F(\mathbf x)\), since \(2-\frac{S_q^\dagger }{S_q}-\frac{S_q}{S_q^\dagger }\le 0\) for all \(\mathbf x\in \left( \mathbb R_{>0}\right) ^u\).

The expression for \(F(\mathbf x)\) may be simplified by choosing

$$\begin{aligned}&\tau _q =\dfrac{\tau _r}{f_r}; ~\sigma ^{(\ell + 1)}_r = f_r\tau _q ;~ \sigma ^{(j)}_q=f_q\sigma ^{(j+1)}_r, \sigma ^{(j)}_r = f_r\sigma ^{(j)}_q~ \nonumber \\&\quad \text {for}j=\ell ,~\ell -1,\dots 1,\,\text {and}\, \vartheta _i = \upsilon _i ~ \text {for} i = 0,1,\dots ,n \end{aligned}$$
(89)

from which follows

$$\begin{aligned} \sigma ^{(j)}_r= & {} \sigma ^{(1)}_r(f_qf_r)^{1-j},\;\hbox { for} \;j=1,2,\dots ,\ell + 1; \nonumber \\ \sigma ^{(j)}_q= & {} \sigma ^{(1)}_r(f_qf_r)^{1-j}f_r^{-1},\; \hbox {for}\; j=1,2,\dots ,\ell ;\nonumber \\ \tau _q= & {} \sigma ^{(1)}_rf_r^{-1}(f_qf_r)^{-\ell } ; \quad \tau _r =\sigma ^{(1)}_r(f_qf_r)^{-\ell } . \end{aligned}$$
(90)

Using these substitutions and the fact that the size of the fraction of population in the \(i\mathrm{th}\) hosts group \(H_i=S_i+I_i\) is constant for \(i=0,\;\cdots ,\;n\), we get:

$$\begin{aligned} F(\mathbf x)= & {} r_\mathrm{suc}^\dagger S_q^\dagger \left( 1-\frac{S^\dagger _q}{S_q}\right) +\left( (\sigma _r^{(1)}-\tilde{\sigma }_r)r_\mathrm{inf}+(\tilde{\sigma }_r -1)r_\mathrm{suc}\right) S_q+r_\mathrm{suc}S_q^\dagger \\&+\, \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}+\frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger } - 1\right) +\,\tilde{\sigma }_r\frac{\delta }{f_r} S_r^\dagger \left( 1-\frac{S_r}{S_r^\dagger }\right) \\&-\,\tilde{\sigma }_r\left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q \frac{S^\dagger _r}{S_r} - \, \sigma _r^{(1)}r_\mathrm{inf}S_q \frac{E^{(1)\dagger }_r}{E^{(1)}_r} +\, r_\mathrm{suc}\sigma _r^{(1)}{\displaystyle \sum _{j=1}^{\ell }}\frac{E^{(i)\dagger }_q}{(f_qf_r)^{j}} \left( 1- \frac{E^{(j)}_q}{E^{(j)\dagger }_q} \frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}\right) \\&+\,\delta \sigma _r^{(1)}{\displaystyle \sum _{j=1}^{\ell } }\frac{ E^{(j)\dagger }_r}{f_r(f_qf_r)^{j-1}}\left( 1-\, \frac{ E^{(j)}_r}{ E^{(j)\dagger }_r}\frac{E^{(j)\dagger }_q}{E^{(j)}_q}\right) +\delta \sigma _r^{(1)} \frac{ E^{(\ell + 1)\dagger }_r}{f_r(f_qf_r)^{l}} \left( 1 - \frac{E^{(\ell + 1)}_r}{ E^{(\ell + 1)\dagger }_r} \frac{I^\dagger _q}{I_q}\right) \\&+\, \delta \sigma _r^{(1)}\frac{I_r^\dagger }{f_r(f_qf_r)^{l}} \left( 1 - \frac{I_r}{I_r^\dagger }\frac{I^\dagger _q}{I_q}\right) +\,r_\mathrm{suc}\sigma _r^{(1)} \frac{I_q^\dagger }{(f_qf_r)^{l}} \left( \frac{1}{f_rf_q}- \frac{I_q}{I_q^\dagger }\frac{I^\dagger _r}{I_r} \right) \\&+ \,r_\mathrm{suc}\sigma _r^{(1)} \frac{f_rf_q-1}{(f_qf_r)^{\ell + 1}}I_q +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i\left( \nu _i - \tilde{\nu }_i\right) S^\dagger _i \left( 2-\frac{S^\dagger _i}{S_i} \right) \\&- \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \nu _i - \tilde{\nu }_i\right) H_i +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i(\nu _i - \tilde{\nu }_i ) I^\dagger _i -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i} + \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \gamma _i+\tilde{\nu }_i\right) I^\dagger _i \frac{S^\dagger _i}{S_i} \\&+\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i +\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I_q}{H} S^\dagger _i-\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i\frac{S^\dagger _i}{S_i} -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _ia \varphi _i\frac{I_q}{H}S_i\frac{I^\dagger _i}{I_i} \end{aligned}$$

Using the fact that all time derivatives in system (1) are zero at the EE, we find: \(r_\mathrm{suc}^\dagger I_q^\dagger = \frac{\delta }{f_r}I_r^\dagger \), \(\delta S_r^\dagger =f_r\left( r_\mathrm{suc}^\dagger -r_\mathrm{inf}^\dagger \right) S_q^\dagger \), \(r_\mathrm{suc}E_q^{(j)\dagger }=\frac{\delta }{f_r}E_r^{(j+1)\dagger }\) for \(j = 1,2,\dots , \ell \), and \(a\varphi _i\frac{I_q^\dagger }{H^*} S^\dagger _i = (\nu _i+\gamma _i)I^\dagger _i\) for \(i=0,1,\dots , n\). This leads to

$$\begin{aligned} F(\mathbf x)= & {} r_\mathrm{suc}^\dagger S_q^\dagger \left( 1-\frac{S^\dagger _q}{S_q}\right) +\left( (\sigma _r^{(1)}-\tilde{\sigma }_r)r_\mathrm{inf}+(\tilde{\sigma }_r -1)r_\mathrm{suc}\right) S_q +r_\mathrm{suc}S_q^\dagger \\&+ \,\delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}+\frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }-1\right) +\,\tilde{\sigma }_r\frac{\delta }{f_r} S_r^\dagger \left( 1-\frac{S_r}{S_r^\dagger }\right) \\&-\;\tilde{\sigma }_r\left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q \frac{S^\dagger _r}{S_r} - \, \sigma _r^{(1)}r_\mathrm{inf}S_q \frac{E^{(1)\dagger }_r}{E^{(1)}_r} \\&+\,\sigma _r^{(1)} \frac{\delta }{f_r} E^{(1)\dagger }_r\left( 1-\, \frac{ E^{(1)}_r}{ E^{(1)\dagger }_r}\frac{E^{(1)\dagger }_q}{E^{(1)}_q}\right) +\,r_\mathrm{suc}\sigma _r^{(1)} \frac{1-f_rf_q}{(f_qf_r)^{\ell + 1}} \left( I^\dagger _q - I_q\right) \\&+\, r_\mathrm{suc}\sigma _r^{(1)}{\displaystyle \sum _{j=1}^{\ell -1}}\frac{E^{(i)\dagger }_q}{(f_qf_r)^{i}}\left( 2- \frac{E^{(j)}_q}{E^{(j)\dagger }_q}\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}-\, \frac{ E^{(j+1)}_r}{ E^{(j+1)\dagger }_r}\frac{E^{(j+1)\dagger }_q}{E^{(j+1)}_q}\right) \\&+\, r_\mathrm{suc}\sigma _r^{(1)}\frac{E^{(l)\dagger }_q}{(f_qf_r)^{l}}\left( 2- \frac{E^{(l)}_q}{E^{(l)\dagger }_q}\frac{E^{(\ell + 1)\dagger }_r}{E^{(\ell + 1)}_r}- \frac{E^{(\ell + 1)}_r}{E^{(\ell + 1)\dagger }_r}\frac{I^\dagger _q}{I_q}\right) \\&+\, r_\mathrm{suc}\sigma _r^{(1)}\frac{I_q^\dagger }{(f_qf_r)^{l}} \left( 2 - \frac{I_r}{I_r^\dagger }\frac{I_q^\dagger }{I_q}- \frac{I_q}{I_q^\dagger }\frac{I^\dagger _r}{I_r}\right) +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i\left( \nu _i - \tilde{\nu }_i\right) S^\dagger _i \left( 2-\frac{S^\dagger _i}{S_i} \right) \\&- \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \nu _i - \tilde{\nu }_i\right) H_i +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i(\nu _i - \tilde{\nu }_i ) I^\dagger _i \\&-\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i} - \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \nu _i - \tilde{\nu }_i\right) I^\dagger _i \frac{S^\dagger _i}{S_i} \\&+\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i +\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I_q}{H} S^\dagger _i -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _ia \varphi _i\frac{I_q}{H}S_i\frac{I^\dagger _i}{I_i} \end{aligned}$$

Using relations between components of \(\mathbf x^\dagger \) given in (26), we may derive

$$\begin{aligned} r_\mathrm{inf}^\dagger S^\dagger _q= & {} \frac{\delta E^{(1)\dagger }_r}{f_r} = \frac{\delta E^{(2)\dagger }_r}{f_r(f_qf_r)} = \cdots = \frac{\delta E^{(\ell + 1)\dagger }_r}{f_r(f_qf_r)^\ell } \\= & {} \frac{r_\mathrm{suc}(1-f_qf_r) I^{\dagger }_q}{(f_qf_r)^{\ell + 1}} \hbox { and } \frac{\delta E^{(j+1)\dagger }_r}{f_r(f_qf_r)^j} = \frac{r_\mathrm{suc}E^{(j)\dagger }_q}{(f_qf_r)^j},\;\;\; j=1,\dots ,l, \end{aligned}$$

and after few algebraic rearrangements, the above becomes:

$$\begin{aligned} F(\mathbf x)= & {} \left( (\sigma _r^{(1)}-\tilde{\sigma }_r)r_\mathrm{inf}+(\tilde{\sigma }_r -1)r_\mathrm{suc}\right) S_q +r_\mathrm{suc}^\dagger S_q^\dagger \left( 1-\frac{S^\dagger _q}{S_q}\right) \\&+r_\mathrm{suc}S_q^\dagger + \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q} + \frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }-1\right) +\,\tilde{\sigma }_r\frac{\delta }{f_r} S^\dagger _r \left( 1-\frac{S_r}{S_r^\dagger }\right) \\&-\;\tilde{\sigma }_r\left( r_\mathrm{suc}-r_\mathrm{inf}\right) S_q \frac{S^\dagger _r}{S_r} - \, \sigma _r^{(1)}r_\mathrm{inf}S_q \frac{E^{(1)\dagger }_r}{E^{(1)}_r}\\&+\, \sigma _r^{(1)}r_\mathrm{inf}^\dagger S^\dagger _q\left( 2\ell +2- {\displaystyle \sum _{j=1}^{\ell }}\frac{E^{(j)}_q}{E^{(j)\dagger }_q}\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}-\, {\displaystyle \sum _{j=1}^{\ell }}\frac{ E^{(j)}_r}{ E^{(j)\dagger }_r}\frac{E^{(j)\dagger }_q}{E^{(j)}_q}- \frac{E^{(\ell + 1)}_r}{E^{(\ell + 1)\dagger }_r}\frac{I^\dagger _q}{I_q} - \frac{I_q}{I^\dagger _q}\right) \\&+\, \frac{r_\mathrm{suc}\sigma _r^{(1)}}{(f_qf_r)^{l}}I_q^\dagger \left( 2 - \frac{I_r}{I_r^\dagger }\frac{I_q^\dagger }{I_q}- \frac{I_q}{I_q^\dagger }\frac{I^\dagger _r}{I_r}\right) +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i\left( \nu _i - \tilde{\nu }_i\right) S^\dagger _i \left( 2-\frac{S^\dagger _i}{S_i} \right) \\&- \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \nu _i - \tilde{\nu }_i\right) H_i +\,{\displaystyle \sum _{i=0}^{n}}\upsilon _i(\nu _i - \tilde{\nu }_i ) I^\dagger _i \\&-\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i}- \,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \nu _i - \tilde{\nu }_i\right) I^\dagger _i \frac{S^\dagger _i}{S_i} +\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I^\dagger _q}{H^*} S^\dagger _i \\&+\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i a\,\varphi _i\frac{I_q}{H} S^\dagger _i -\,{\displaystyle \sum _{i=0}^{n}} \upsilon _ia \varphi _i\frac{I_q}{H}S_i \frac{I^\dagger _i}{I_i}. \end{aligned}$$

We choose \(\tilde{\sigma }_r=\sigma ^{(1)}_r=1\) to make the initial terms vanish. We also choose \(\upsilon _i = \frac{a}{H}\frac{\phi _{i} }{\nu _i - \tilde{\nu }_i}S^\dagger _q\), so that \(r_\mathrm{suc}S^\dagger _q = {\sum _{i=0}^n}\upsilon _i(\nu _i - \tilde{\nu }_i)H_i\). Using the fact that \(r_\mathrm{inf}= \frac{a}{H}{\sum _{i=0}^n}\phi _{i} \xi _{i} I_i\) and \(r_\mathrm{suc}= \frac{a}{H}{\sum _{i=0}^n}\phi _{i} \left( S_i+I_i\right) \), the above expression becomes:

$$\begin{aligned} F(\mathbf x)= & {} \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}+\frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }-1\right) +\, \frac{r_\mathrm{suc}}{(f_qf_r)^{l}} I_q^\dagger \left( 2 - \frac{I_r}{I_r^\dagger }\frac{I_q^\dagger }{I_q}- \frac{I_q}{I_q^\dagger }\frac{I^\dagger _r}{I_r}\right) \\&+\,\frac{ a}{H}{\displaystyle \sum _{i=0}^n}\phi _{i} S^\dagger _iS^\dagger _q \left( 4 - \frac{S^\dagger _q}{S_q} -\frac{S^\dagger _i}{S_i} -\frac{S_i}{S^\dagger _i} \frac{S_q}{S^\dagger _q}\frac{S^\dagger _r}{S_r}-\frac{S_r}{S^\dagger _r}\right) \\&+\,\frac{ a}{H}{\displaystyle \sum _{i=0}^n} \xi _{i} \phi _{i} I^\dagger _iS^\dagger _q\left( 2\ell +5 - \frac{S^\dagger _i}{S_i} -\frac{S^\dagger _q}{S_q} -\; \frac{I_i}{I^\dagger _i}\frac{S_q}{S^\dagger _q}\frac{E^{(1)\dagger }_r}{E^{(1)}_r}- {\displaystyle \sum _{j=1}^{\ell }}\frac{E^{(j)}_q}{E^{(j)\dagger }_q}\frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}\right. \\&\left. -\, {\displaystyle \sum _{j=1}^{\ell }}\frac{ E^{(j)}_r}{ E^{(j)\dagger }_r}\frac{E^{(j)\dagger }_q}{E^{(j)}_q} -\frac{E^{(\ell + 1)}_r}{E^{(\ell + 1)\dagger }_r}\frac{I^\dagger _q}{I_q}- \frac{I_q}{I^\dagger _q}\frac{S_i}{S^\dagger _i} \frac{I^\dagger _i}{I_i}\right) \\&+\,\frac{ a}{H}{\displaystyle \sum _{i=0}^n}\overline{\xi _{i}} \phi _{i} I^\dagger _iS^\dagger _q\left( 4 + \frac{I_q}{I^\dagger _q} -\frac{S^\dagger _q}{S_q} - \frac{S^\dagger _i}{S_i} -\frac{I_i}{I^\dagger _i}\frac{S_q}{S^\dagger _q}\frac{S^\dagger _r}{S_r}-\,\frac{S_r}{S^\dagger _r} - \frac{I_q}{I^\dagger _q}\frac{S_i}{S^\dagger _i} \frac{I^\dagger _i}{I_i}\right) \\&-\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i\left( \gamma _i+\tilde{\nu }_i\right) I_i\frac{S^\dagger _i}{S_i} +\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i (\gamma _i+\tilde{\nu }_i)I^\dagger _i\\&+\,\frac{I_q}{I^\dagger _q}{\displaystyle \sum _{i=0}^{n}} \upsilon _i (\gamma _i+\tilde{\nu }_i)I^\dagger _i -\,\frac{I_q}{I^\dagger _q}{\displaystyle \sum _{i=0}^{n}} \upsilon _i (\gamma _i+\tilde{\nu }_i)I^\dagger _i\frac{S_i}{S^\dagger _i} \frac{I^\dagger _i}{I_i}, \end{aligned}$$

where \(\overline{\xi _{i}} =1-\xi _{i} \), \(i=0,\dots ,n\). Setting \(\hat{\nu }_i = \nu _i - \tilde{\nu }_i\) and replacing \(H_i\) by \(S^\dagger _i+I^\dagger _i\) for \(i=0,\dots ,n\) gives finally

$$\begin{aligned} F(\mathbf x)= & {} \delta S^\dagger _r \left( \frac{S^\dagger _q}{S_q}+\frac{S_r}{S_r^\dagger }-\frac{S^\dagger _q}{S_q}\frac{S_r}{S_r^\dagger }-1\right) +\, I_q^\dagger \frac{r_\mathrm{suc}}{(f_qf_r)^{l}} \left( 2 - \frac{I_r}{I_r^\dagger }\frac{I_q^\dagger }{I_q}- \frac{I_q}{I_q^\dagger }\frac{I^\dagger _r}{I_r}\right) \\&+\,{\displaystyle \sum _{i=0}^n}\hat{\nu }_i\upsilon _iS^\dagger _i \left( 4-\frac{S^\dagger _i}{S_i}-\frac{S^\dagger _q}{S_q}-\frac{S_i}{S^\dagger _i}\frac{S_q}{S^\dagger _q}\frac{S^\dagger _r}{S_r}-\frac{S_r}{S^\dagger _r}\right) \\&+\,{\displaystyle \sum _{i=0}^n}\hat{\nu }_i \upsilon _i\xi _{i} I^\dagger _i\left( 2\ell +5 -\frac{S^\dagger _i}{S_i}-\frac{S^\dagger _q}{S_q} -\; \frac{I_i}{I^\dagger _i}\frac{S_q}{S^\dagger _q}\frac{E^{(1)\dagger }_r}{E^{(1)}_r}- {\displaystyle \sum _{j=1}^{\ell }} \frac{E^{(j)}_q}{E^{(j)\dagger }_q} \frac{E^{(j+1)\dagger }_r}{E^{(j+1)}_r}\right. \\&\left. -\, {\displaystyle \sum _{j=1}^{\ell }}\frac{ E^{(j)}_r}{ E^{(j)\dagger }_r}\frac{E^{(j)\dagger }_q}{E^{(j)}_q} -\frac{E^{(\ell + 1)}_r}{E^{(\ell + 1)\dagger }_r}\frac{I^\dagger _q}{I_q}-\frac{I_q}{I^\dagger _q}\frac{S_i}{S^\dagger _i} \frac{I^\dagger _i}{I_i}\right) \\&+\,{\displaystyle \sum _{i=0}^n}\hat{\nu }_i\upsilon _i\overline{\xi _{i}} I^\dagger _i\left( 4 + \frac{I_q}{I^\dagger _q}-\frac{S^\dagger _i}{S_i}-\frac{S^\dagger _q}{S_q}-\frac{I_i}{I^\dagger _i}\frac{S_q}{S^\dagger _q}\frac{S^\dagger _r}{S_r}-\,\frac{S_r}{S^\dagger _r}-\frac{I_q}{I^\dagger _q}\frac{S_i}{S^\dagger _i} \frac{I^\dagger _i}{I_i}\right) \\&+\,{\displaystyle \sum _{i=0}^{n}} \upsilon _i (\gamma _i+\tilde{\nu }_i)I^\dagger _i\left( 1 - \frac{I_i}{I_i^\dagger } \frac{S_i^\dagger }{S_i}\right) \\&+\,\frac{I_q}{I^\dagger _q}{\displaystyle \sum _{i=0}^{n}} \upsilon _i (\gamma _i+\tilde{\nu }_i)I^\dagger _i\left( 1 - \frac{I^\dagger _i}{I_i} \frac{S_i}{S^\dagger _i}\right) . \end{aligned}$$

which together with (88) yields expression (41). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamgang, J.C., Thron, C.P. Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model. Bull Math Biol 81, 4366–4411 (2019). https://doi.org/10.1007/s11538-019-00637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00637-6

Keywords

Mathematics Subject Classification

Navigation