Skip to main content

Advertisement

Log in

Effective and ineffective treatment in a malaria model for humans in an endemic region

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

A mathematical model for malaria in humans was developed to explore the effect of treatment on the transmission and control of malaria. The model incorporates effective antimalarial and substandard drugs as treatment for infectious humans. The reproduction number \(R_{0}\) is evaluated, and shown to increase due to the presence of partially recovered humans. The disease free equilibrium is locally asymptotically stable when \(R_{0}<1\) and unstable when \(R_{0}>1\). The model exhibits backward, imperfect or transcritical bifurcation depending on the value of the disease induced death rate and \(R_{0}\). The numerical simulations, local and global sensitivity analysis suggest that the combination of effective control measures and the prompt use of effective antimalarial drugs that clear parasites quickly and give a long post-treatment prophylaxis may not only prevent transmission of infection to mosquitoes, but significantly reduce the number of infectious humans and the overall sources of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agusto, F.B., Del Valle, S.Y., Blayneh, K.W., Ngonghala, C.N., Goncalves, M.J., Li, N., Zhao, R., Gong, H.: The impact of bed-net use on malaria prevalence. J. Theor. Biol. 320, 58–65 (2013)

    Article  Google Scholar 

  2. Agusto, F.B., Marcus, N., Okosun, K.O.: Application of optimal control to the epidemiology of malaria. Electron. J. Differ. Equ. 81, 1–22 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Anderson, B., Jackson, J., Sitharam, M.: Descartes’ rule of signs revisited. Am. Math. Mon. 105, 447–451 (1998)

    Article  MathSciNet  Google Scholar 

  4. Awuah, R.B., Asante, P.Y., Sakyi, L., Biney, A.A., Kushitor, M.K., Agyei, F., Aikins, A.D.G.: Factors associated with treatment-seeking for malaria in urban poor communities in Accra, Ghana. Malar. J. 17, 168 (2018)

    Article  Google Scholar 

  5. Badu, K., Brenya, R.C., Timmann, C., Garms, R., Kruppa, T.F.: Malaria transmission intensity and dynamics of clinical malaria incidence in a mountainous forest region of Ghana. Malar. World J. 4, 14 (2013)

    Google Scholar 

  6. Bate, R.: Making a killing: the deadly implications of the counterfeit drug trade. American Enterprise Institute (2008)

  7. Cai, L.M., Lashari, A.A., Jung, I.H., Okosun, K.O., Seo, Y.I.: Mathematical analysis of a malaria model with partial immunity to reinfection. In: Abstract and Applied Analysis, Vol. 2013. Hindawi (2013)

  8. Cariboni, J., Gatelli, D., Liska, R., Saltelli, A.: The role of sensitivity analysis in ecological modelling. Ecol. Model. 203, 167–182 (2007)

    Article  Google Scholar 

  9. Chitnis, N.R.: Using mathematical models in controlling the spread of malaria. University of Arizona, Ph.D. diss. (2005)

  10. Chiyaka, C., Garira, W., Dube, S.: Transmission model of endemic human malaria in a partially immune population. Math. Comput. Model. 46, 806–822 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ghana Statistical Service: Ghana multiple indicator cluster survey with an enhanced malaria module and biomarker 2011 final report. Tech. Rep, Ghana Statistical Service (2011)

  12. Huo, H.F., Qiu, G.M.: Stability of a mathematical model of malaria transmission with relapse. In: Abstract and Applied Analysis, Vol. 2014. Hindawi (2014)

  13. Kasasa, S., Asoala, V., Gosoniu, L., Anto, F., Adjuik, M., Tindana, C., Smith, T., Owusu-Agyei, S., Vounatsou, P.: Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana. Malar. J. 12, 63 (2013)

    Article  Google Scholar 

  14. Klassen, W.: Introduction: development of the sterile insect technique for African malaria vectors (2009)

  15. Koram, K.A., Abuaku, B., Duah, N., Quashie, N.: Comparative efficacy of antimalarial drugs including ACTs in the treatment of uncomplicated malaria among children under 5 years in Ghana. Acta Trop. 95, 194–203 (2005)

    Article  Google Scholar 

  16. Lewis, E.R.: Network Models in Population Biology, vol. 7. Springer, Berlin (2012)

    Google Scholar 

  17. Marshall, J.M., Taylor, C.E.: Malaria control with transgenic mosquitoes. PLoS Med. 6, e1000020 (2009)

    Article  Google Scholar 

  18. Nayyar, G.M., Breman, J.G., Newton, P.N., Herrington, J.: Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect. Dis. 12, 488–496 (2012)

    Article  Google Scholar 

  19. Newton, P.N., Green, M.D., Mildenhall, D.C., Plançon, A., Nettey, H., Nyadong, L., Hostetler, D.M., Swamidoss, I., Harris, G.A., Powell, K., et al.: Poor quality vital anti-malarials in Africa-an urgent neglected public health priority. Malar. J. 10, 352 (2011)

    Article  Google Scholar 

  20. Ngwa, G.A., Shu, W.S.: A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 32, 747–763 (2000)

    Article  MathSciNet  Google Scholar 

  21. Niger, A.M., Gumel, A.B.: Mathematical analysis of the role of repeated exposure on malaria transmission dynamics. Differ. Equ. Dyn. Syst. 16, 251–287 (2008)

    Article  MathSciNet  Google Scholar 

  22. Oduro, A.R., Anyorigiya, T., Hodgson, A., Ansah, P., Anto, F., Ansah, N.A., Atuguba, F., Mumuni, G., Amankwa, J.: A randomized comparative study of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated malaria in Ghana. Trop. Med. Int. Health 10, 279–284 (2005)

    Article  Google Scholar 

  23. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control strategies and cost-effectiveness analysis of a malaria model. BioSystems 111, 83–101 (2013)

    Article  Google Scholar 

  24. Parham, P.E., Michael, E.: Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2009)

    Article  Google Scholar 

  25. Renschler, J.P., Walters, K.M., Newton, P.N., Laxminarayan, R.: Estimated under-five deaths associated with poor-quality antimalarials in sub-Saharan Africa. Am. J. Trop. Med. Hyg. 92, 119–126 (2015)

    Article  Google Scholar 

  26. Sayang, C., Gausseres, M., Vernazza-Licht, N., Malvy, D., Bley, D., Millet, P.: Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in rural health facilities in southern Cameroon. Malar. J. 8, 174 (2009)

    Article  Google Scholar 

  27. Stone, C.M., Lindsay, S.W., Chitnis, N.: How effective is integrated vector management against malaria and lymphatic filariasis where the diseases are transmitted by the same vector? PLoS Negl. Trop. Dis. 8, e3393 (2014)

    Article  Google Scholar 

  28. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books Publishing, New York (1994)

    MATH  Google Scholar 

  29. Stuckey, E.M., Stevenson, J., Galactionova, K., Baidjoe, A.Y., Bousema, T., Odongo, W., Kariuki, S., Drakeley, C., Smith, T.A., Cox, J., et al.: Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PloS One 9, e107700 (2014)

    Article  Google Scholar 

  30. Tay, S., Danuor, S., Mensah, D., Acheampong, G., Abruquah, H., Morse, A., Caminade, C., Badu, K., Tompkins, A., Hassan, H.: Climate variability and malaria incidence in peri-urban, urban and rural communities around Kumasi, Ghana: a case study at three health facilities; Emena, Atonsu and Akropong. Int. J. Parasitol Res. 4, 83 (2012)

    Article  Google Scholar 

  31. Tchouassi, D., Quakyi, I., Addison, E., Bosompem, K., Wilson, M., Appawu, M., Brown, C., Boakye, D.: Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-sea area of coastal Ghana. Parasit. Vectors 5, 212 (2012)

    Article  Google Scholar 

  32. Tumwiine, J., Mugisha, J., Luboobi, L.S.: A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity. Applied Mathematics and Computation 189, 1953–1965 (2007)

    Article  MathSciNet  Google Scholar 

  33. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences 180, 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  34. World Health Organization: Guidelines for the treatment of malaria. World Health Organization, Tech. Rep. (2015)

  35. World Health Organization: World malaria report 2016. World Health Organization, Tech. Rep. (2016)

  36. World Health Organization: Ghana: WHO statistical profile. World Health Organization, Tech. Rep. (2017)

  37. World Health Organization: World malaria report 2018. World Health Organization, Tech. Rep. (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Danquah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danquah, B.A., Chirove, F. & Banasiak, J. Effective and ineffective treatment in a malaria model for humans in an endemic region. Afr. Mat. 30, 1181–1204 (2019). https://doi.org/10.1007/s13370-019-00713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00713-z

Keywords

Mathematics Subject Classification

Navigation