Skip to main content
Log in

The Threshold Infection Level for \({{Wolbachia }}\) Invasion in a Two-Sex Mosquito Population Model

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we formulate a new \({{Wolbachia }}\) infection model in a two-sex mosquito population with stage structure. Some key factors of \({{Wolbachia }}\) infection, including cytoplasmic incompatibility (CI), male killing (MK) effect, maternal transmission, fecundity cost due to fitness effect and different mortality rates for infected individuals, are captured. Dynamical analysis has been carried out, and the basic reproduction number \(R_0\) for \({{Wolbachia }}\) infection has been calculated. Our analysis shows that \({{Wolbachia }}\) can establish in a mosquito population if \(R_0\) is greater than unity. If \(R_0\) is less than unity, \({{Wolbachia }}\) establishment still can be achieved if backward bifurcation occurs. Under this circumstance, the initial values lying in the basin of attraction of the stable \({{Wolbachia }}\)-established equilibrium are essential to guarantee \({{Wolbachia }}\) establishment. In particular, the method to find the basin of attraction and evaluate the threshold initial values is given. Besides, according to a comparison of different releasing strategies, it is shown that, from the perspective of economy and disease control, keeping the number of infected female mosquitoes to a necessary minimum by relying on higher number of male mosquitoes released is a desirable strategy. Moreover, global and local sensitivity analysis and numerical simulation have been performed to explore the impact of model parameters to the success of population establishment. Our results suggest that low levels of MK effect and fitness costs as well as high levels of CI and maternal inheritance are in favor of \({{Wolbachia }}\) establishment. Moreover, not considering MK effect and incomplete CI effect may result in the underestimation of the number of infected mosquitoes needed to be released.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Becker N, Petric D, Boase C, Lane J, Zgomba M, Dahl C, Kaiser A (2003) Mosquitoes and their control, vol 2. Springer, Berlin

    Book  Google Scholar 

  • Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium \({{\mathit{Wolbachia}}}\) induces resistance to dengue virus in aedes aegypti. PLoS Pathog 6(4):e1000833

    Article  Google Scholar 

  • Bliman PA, Aronna MS, Coelho FC, Da Silva MA (2018) Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. J Math Biol 76(5):1269–1300

    Article  MathSciNet  MATH  Google Scholar 

  • Campo-Duarte DE, Vasilieva O, Cardona-Salgado D, Svinin M (2018) Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations. J Math Biol 76(7):1907–1950

    Article  MathSciNet  MATH  Google Scholar 

  • Cannavó F (2012) Sensitivity analysis for volcanic source modeling quality assessment and model selection. Comput Geosci 44:52–59

    Article  Google Scholar 

  • Caspari E, Watson G (1959) On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 13(4):568–570

    Article  Google Scholar 

  • Chan MH, Kim PS (2013) Modelling a Wolbachia invasion using a slow–fast dispersal reaction–diffusion approach. Bull Math Biol 75(9):1501–1523

    Article  MathSciNet  MATH  Google Scholar 

  • Delatte H, Gimonneau G, Triboire A, Fontenille D (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikungunya and Dengue in the Indian Ocean. J Med Entomol 46(1):33–41

    Article  Google Scholar 

  • Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NM (2018) Using Wolbachia for dengue control: insights from modelling. Trends Parasitol 34(2):102–113

    Article  Google Scholar 

  • Egas M, Vala F, Breeuwer JAJ (2002) On the evolution of cytoplasmic incompatibility in haplodiploid species. Evolution 56(6):1101–1109

    Article  Google Scholar 

  • Engelstädter J, Telschow A, Hammerstein P (2004) Infection dynamics of different Wolbachia-types within one host population. J Theor Biol 231(3):345–355

  • Fang J, Gourley SA, Lou Y (2016) Stage-structured models of intra-and inter-specific competition within age classes. J Differ Equ 260(2):1918–1953

    Article  MathSciNet  MATH  Google Scholar 

  • Farkas JZ, Gourley SA, Liu R, Yakubu A-A (2017) Modelling Wolbachia infection in a sex-structured mosquito population carrying west nile virus. J Math Biol 75(3):621–647

    Article  MathSciNet  MATH  Google Scholar 

  • Farkas JZ, Hinow P (2010) Structured and unstructured continuous models for Wolbachia infections. Bull Math Biol 72(8):2067–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Fenton A, Johnson KN, Brownlie JC, Hurst GD (2011) Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy. Am Nat 178(3):333–342

    Article  Google Scholar 

  • Hancock PA, Sinkins SP, Godfray HCJ (2011) Population dynamic models of the spread of Wolbachia. Am Nat 177(3):323–333

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281(2):215–220

    Article  Google Scholar 

  • Hu L, Tang M, Wu Z, Xi Z, Yu J (2018) The threshold infection level for Wolbachia invasion in random environments. J Differ Equ. https://doi.org/10.1016/j.jde.2018.09.035

  • Hughes H, Britton NF (2013) Modelling the use of Wolbachia to control dengue fever transmission. Bull Math Biol 75(5):796–818

    Article  MathSciNet  MATH  Google Scholar 

  • Jiggins FM (2017) The spread of Wolbachia through mosquito populations. PLoS Biol 15(6):e2002780. https://doi.org/10.1371/journal.pbio.2002780

    Article  Google Scholar 

  • Joshi D, McFadden MJ, Bevins D, Zhang F, Xi Z (2014) Wolbachia strain w AlbB confers both fitness costs and benefit on Anopheles stephensi. Parasites Vectors 7(1):336

    Article  Google Scholar 

  • Keeling MJ, Jiggins F, Read JM (2003) The invasion and coexistence of competing Wolbachia strains. Heredity 91(4):382

    Article  Google Scholar 

  • Koiller J, Silva MD, Souza M, Codeço C, Iggidr A et al. (2014) Aedes, Wolbachia and Dengue. [Research Report] RR-8462, Inria Nancy - Grand Est (Villers-lès-Nancy, France). 47. https://hal.inria.fr/hal-00939411/document

  • Laven H (1951) Crossing experiments with culex strains. Evolution 5(4):370–375

    Article  Google Scholar 

  • Li J (2017) New revised simple models for interactive wild and sterile mosquito populations and their dynamics. J Biol Dyn 11(sup2):316–333

    Article  MathSciNet  Google Scholar 

  • Li MT, Sun GQ, Yakob L, Zhu HP, Jin Z, Zhang WY (2016) The driving force for 2014 dengue outbreak in Guangdong, China. PloS one 11(11):e0166211

    Article  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang Y-F, Oneill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito aedes aegypti. Science 323(5910):141–144

    Article  Google Scholar 

  • Munga S, Minakawa N, Zhou G, Githeko AK, Yan G (2007) Survivorship of immature stages of anopheles gambiae sl (Diptera: Culicidae) in natural habitats in Western Kenya highlands. J Med Entomol 44(5):758–764

    Article  Google Scholar 

  • Ndii MZ, Hickson RI, Allingham D, Mercer G (2015) Modelling the transmission dynamics of dengue in the presence of Wolbachia. Math Biosci 262:157–166

    Article  MathSciNet  MATH  Google Scholar 

  • Ndii MZ, Hickson RI, Mercer GN (2012) Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission. ANZIAM J 53(3):213–227

    Article  MathSciNet  MATH  Google Scholar 

  • O’Neill SL, Giordano R, Colbert A, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci 89(7):2699–2702

    Article  Google Scholar 

  • Sallet G, Silva Moacyr AHB (2015) Monotone dynamical systems and some models of Wolbachia in Aedes aegypti populations. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 20:145-176. https://hal.inria.fr/hal-01320616/document

  • Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270

    Article  MathSciNet  MATH  Google Scholar 

  • Sarrazin F, Pianosi F, Wagener T (2016) Global sensitivity analysis of environmental models: convergence and validation. Environ Model Softw 79:135–152

    Article  Google Scholar 

  • Schofield P (2002) Spatially explicit models of turelli-hoffmann Wolbachia invasive wave fronts. J Theor Biol 215(1):121–131

    Article  MathSciNet  Google Scholar 

  • Schraiber JG, Kaczmarczyk AN, Kwok R, Park M, Silverstein R, Rutaganira FU, Aggarwal T, Schwemmer MA, Hom CL, Grosberg RK et al (2012) Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. J Theor Biol 297:26–32

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1):271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Turelli M, Barton NH (2017) Deploying dengue-suppressing Wolbachia: robust models predict slow but effective spatial spread in Aedes aegypti. Theor Popul Biol 115:45–60

    Article  MATH  Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD et al (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453

    Article  Google Scholar 

  • Wang L, Zhao H, Oliva SM, Zhu H (2017) Modeling the transmission and control of Zika in Brazil. Sci Rep 7(1):7721

    Article  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42(1):587–609

    Article  Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc Lond B: Biol Sci 267(1450):1277–1285

    Article  Google Scholar 

  • Xue L, Manore CA, Thongsripong P, Hyman JM (2017) Two-sex mosquito model for the persistence of Wolbachia. J Biol Dyn 11(sup1):216–237

    Article  MathSciNet  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232(5313):657–658

    Article  Google Scholar 

  • Zhang X, Tang S, Cheke RA (2015) Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Anal: Real World Appl 22:236–258

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Tang S, Cheke RA (2015) Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations. Math Biosci 269:164–177

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Tang S, Cheke RA, Zhu H (2016) Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation. Bull Math Biol 78(10):1968–2010

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng B, Tang M, Yu J (2014) Modeling \({{\mathit{Wolbachia}}}\) spread in mosquitoes through delay differential equations. SIAM J Appl Math 74(3):743–770

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Dan Li is supported by the National Natural Science Foundation of China (No. 11801209) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJB110004). Hui Wan is supported by the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents, the NSF of the Jiangsu Higher Education Committee of China (No. 17KJA110002) and a project funded by PAPD of Jiangsu Higher Education Institutions. The authors thank two reviewers and Prof. Guihong Fan for very helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wan, H. The Threshold Infection Level for \({{Wolbachia }}\) Invasion in a Two-Sex Mosquito Population Model. Bull Math Biol 81, 2596–2624 (2019). https://doi.org/10.1007/s11538-019-00620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-019-00620-1

Keywords

Mathematics Subject Classification

Navigation