Skip to main content

Advertisement

Log in

Structured and Unstructured Continuous Models for Wolbachia Infections

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caspari, E., Watson, G.S., 1959. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 13, 568–570.

    Article  Google Scholar 

  • Cushing, J.M., 1998. An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Engel, K.-J., Nagel, R., 2000. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York.

    MATH  Google Scholar 

  • Engelstädter, J., Telschow, A., Hammerstein, P., 2004. Infection dynamics of different Wolbachia-types within one host population. J. Theor. Biol. 231, 345–355.

    Article  Google Scholar 

  • Farkas, J.Z., 2006. On the linearized stability of age-structured multispecies populations. J. Appl. Math. Article ID:60643.

    Google Scholar 

  • Farkas, J.Z., Hagen, T., 2007. Stability and regularity results for a size-structured population model. J. Math. Anal. Appl. 328, 119–136.

    Article  MathSciNet  MATH  Google Scholar 

  • Farkas, J.Z., Hagen, T., 2008. Asymptotic behavior of size-structured populations via juvenile-adult interaction. Discrete Contin. Dyn. Syst. Ser. B 9, 249–266.

    MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., MacCamy, R.C., 1974. Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54, 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Haygood, R., Turelli, M., 2009. Evolution of incompatibility-inducing microbes in subdivided host populations. Evolution 63, 432–447.

    Article  Google Scholar 

  • Hoffmann, A.A., Turelli, M., 1997. Cytoplasmic incompatibility in insects. In: Hoffmann, A.A., O’Neill, S.L., Werren, J.H. (Eds.), Influential Passengers, pp. 42–80. Oxford University Press, Oxford.

    Google Scholar 

  • Iannelli, M., Martcheva, M., Milner, F.A., 2005. Gender-Structured Population Modeling. Frontiers in Applied Mathematics, vol. 31. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Keeling, M.J., Jiggins, F.M., Read, J.M., 2003. The invasion and coexistence of competing Wolbachia strains. Heredity 91, 382–388.

    Article  Google Scholar 

  • Magal, P., Ruan, S. (Eds.), 2008. Structured Population Models in Biology and Epidemiology. Lecture Notes Mathematics, vol. 1936. Springer, Berlin.

    MATH  Google Scholar 

  • McMeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W.C., Sidhu, M., Wang, Y.-F., O’Neill, S.L., 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323, 141–144.

    Article  Google Scholar 

  • Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68. Springer, Berlin.

    MATH  Google Scholar 

  • O’Neill, S.L., Hoffmann, A.A., Werren, J.H. (Eds.), 1997. Influential Passengers. Oxford University Press, Oxford/New York/Tokyo.

    Google Scholar 

  • Rasgon, J.L., Scott, T.W., 2004. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes. Insect Biochem. Mol. Biol. 34, 707–713.

    Article  Google Scholar 

  • Schofield, P.G., 2002. Spatially explicit models of Turelli–Hoffmann Wolbachia invasive wave fronts. J. Theor. Biol. 215, 121–131.

    Article  MathSciNet  Google Scholar 

  • Stouthamer, R., 1997. Wolbachia induced parthenogenesis. In: Hoffmann, A.A., O’Neill, S.L., Werren, J.H. (Eds.), Influential Passengers, pp. 102–124. Oxford University Press, Oxford.

    Google Scholar 

  • Telschow, A., Hammerstein, P., Werren, J.H., 2005a. The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evolution 59, 1607–1619.

    Google Scholar 

  • Telschow, A., Yamamura, N., Werren, J.H., 2005b. Bidirectional cytoplasmic incompatibility and the stable coexistence of two Wolbachia strains in parapatric host populations. J. Theor. Biol. 235, 265–274.

    Article  MathSciNet  Google Scholar 

  • Turelli, M., 1994. Evolution of incompatibility inducing microbes and their hosts. Evolution 48, 1500–1513.

    Article  Google Scholar 

  • Vautrin, E., Charles, S., Genieys, S., Vavre, F., 2007. Evolution and invasion dynamics of multiple infections with Wolbachia investigated using matrix based models. J. Theor. Biol. 245, 197–209.

    Article  MathSciNet  Google Scholar 

  • Webb, G.F., 1985. Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied Mathematics, vol. 89. Marcel Dekker, New York.

    MATH  Google Scholar 

  • Werren, J.H., 1997. Biology of Wolbachia. Ann. Rev. Entomol. 42, 587–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farkas, J.Z., Hinow, P. Structured and Unstructured Continuous Models for Wolbachia Infections. Bull. Math. Biol. 72, 2067–2088 (2010). https://doi.org/10.1007/s11538-010-9528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9528-1

Keywords

Navigation