Skip to main content
Log in

Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth

  • Special Issue : Mathematical Oncology
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullah LN, Chow EKH (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2(1):3. doi:10.1186/2001-1326-2-3

    Article  Google Scholar 

  • Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120(19):3327–3335. doi:10.1242/jcs.03485

    Article  Google Scholar 

  • Barker N (2014) Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15(1):19–33. doi:10.1038/nrm3721

    Article  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611. doi:10.1038/nature07602

    Article  Google Scholar 

  • Bearer EL, Lowengrub J, Frieboes HB, Chuang YL, Jin F, Wise SM, Ferrari M, Agus DB, Cristini V (2009) Multiparameter computational modeling of tumor invasion. Cancer Res 69(10):4493–4501. doi:10.1158/0008-5472.CAN-08-3834

    Article  Google Scholar 

  • Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727–738. doi:10.1038/nrc3597

    Article  Google Scholar 

  • Biteau B, Hochmuth CE, Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. doi:10.1016/j.stem.2011.10.004

  • Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W (1995) Hepatocyte growth factor/scatter factor induces a variety of tissue-specific morphogenic programs in epithelial cells. J Cell Biol 131(6 Pt 1):1573–1586. doi:10.1083/jcb.131.6.1573

    Article  Google Scholar 

  • Buske P, Przybilla J, Loeffler M, Sachs N, Sato T, Clevers H, Galle J (2012) On the biomechanics of stem cell niche formation in the gut—modelling growing organoids. FEBS J 279:3475–3487. doi:10.1111/j.1742-4658.2012.08646.x 84865978356

    Article  Google Scholar 

  • Byun T, Karimi M, Marsh JL, Milovanovic T, Lin F, Holcombe RF (2005) Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol 58(5):515–519. doi:10.1136/jcp.2004.018598

    Article  Google Scholar 

  • Cao Y, Liang C, Naveed H, Li Y, Chen M, Nie Q (2012) Modeling spatial population dynamics of stem cell lineage in tissue growth. In: Conference proceedings : annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference, pp 5502–5505. doi:10.1109/EMBC.2012.6347240

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science (New York, NY) 346(6205):1248,012. doi:10.1126/science.1248012

    Article  Google Scholar 

  • Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cristini V, Lowengrub J, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46(3):191–224. doi:10.1007/s00285-002-0174-6

    Article  MathSciNet  MATH  Google Scholar 

  • Cruz FD, Matushansky I (2012) Solid tumor differentiation therapy—is it possible? Oncotarget 3(5):559–567. doi:10.18632/oncotarget.512

    Article  Google Scholar 

  • Dale L, Wardle FC (1999) A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin Cell Dev Biol 10(3):319–326. doi:10.1006/scdb.1999.0308

    Article  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254. doi:10.1038/ncb3312

    Article  Google Scholar 

  • Fletcher AG, Murray PJ, Maini PK (2015) Multiscale modelling of intestinal crypt organization and carcinogenesis. Math Models Methods Appl Sci 25(13):2563–2585. doi:10.1142/S0218202515400187

    Article  MathSciNet  MATH  Google Scholar 

  • Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Cancer Res 66(3):1597–1604. doi:10.1158/0008-5472.CAN-05-3166

    Article  Google Scholar 

  • Gao CF, Vande Woude GF (2005) HGF/SF-Met signaling in tumor progression. Cell Res 15(1):49–51. doi:10.1038/sj.cr.7290264

    Article  Google Scholar 

  • Gao X, McDonald JT, Hlatky L, Enderling H (2013) Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res 73(5):1481–1490. doi:10.1158/0008-5472.CAN-12-3429

    Article  Google Scholar 

  • González-Sancho JM, Aguilera O, García JM, Pendás-Franco N, Peña C, Cal S, de Herreros AG, Bonilla F, Muñoz A (2005) The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene 24(6):1098–103

    Article  Google Scholar 

  • Gout S, Huot J (2008) Role of cancer microenvironment in metastasis: focus on colon cancer. doi:10.1007/s12307-008-0007-2

  • Grabinger T, Luks L, Kostadinova F, Zimberlin C, Medema JP, Leist M, Brunner T (2014) Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis 5(5):e1228. doi:10.1038/cddis.2014.183

    Article  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.1038/379088a0

    Article  Google Scholar 

  • Ca Gregory, Singh H, Perry AS, Prockop DJ (2003) The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 278(30):28067–28078. doi:10.1074/jbc.M300373200

    Article  Google Scholar 

  • Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, Giacometti S, Iliadis A, Ciccolini J, Faivre C, Hubert F (2014) Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res 74(22):6397–6407. doi:10.1158/0008-5472.CAN-14-0721

    Article  Google Scholar 

  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36(10):1117–1121. doi:10.1038/ng1430

    Article  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. doi:10.4161/cc.8.20.9701, NIHMS150003

  • Hirsch D, Barker N, Mcneil N, Hu Y, Camps J, Mckinnon K, Clevers H, Ried T, Gaiser T (2014) LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis 35(4):849–858. doi:10.1093/carcin/bgt377

    Article  Google Scholar 

  • Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development (Cambridge, England) 142(18):3113–3125. doi:10.1242/dev.118570

    Article  Google Scholar 

  • Humphries A, Wright NA (2008) Colonic crypt organization and tumorigenesis. Nat Rev Cancer 8(6):415–424. doi:10.1038/nrc2392

    Article  Google Scholar 

  • Ikari T, Hiraki A, Seki K, Sugiura T, Matsumoto K, Shirasuna K (2003) Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland. Dev Dyn 228(2):173–184. doi:10.1002/dvdy.10377

    Article  Google Scholar 

  • Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(126):202–228. doi:10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  • Jones CM, Smith JC (1998) Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev Biol 194(1):12–17. doi:10.1006/dbio.1997.8752

    Article  Google Scholar 

  • Joo KM, Jin J, Kim E, Kim KH, Kim Y, Kang BG, Kang YJ, Lathia JD, Cheong KH, Song PH, Kim H, Seol HJ, Kong DS, Lee JI, Rich JN, Lee J, Nam DH (2012) MET signaling regulates glioblastoma stem cells. Cancer Res 72(15):3828–3838. doi:10.1158/0008-5472.CAN-11-3760

    Article  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. doi:10.1038/nrc2389

    Article  Google Scholar 

  • Kosinski C, Li VSW, Chan ASY, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, Leung SY, Chen X (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104(39):15418–15423. doi:10.1073/pnas.0707210104

    Article  Google Scholar 

  • Krausova M, Korinek V (2014) Wnt signaling in adult intestinal stem cells and cancer. doi:10.1016/j.cellsig.2013.11.032

  • Kunche S, Yan H, Calof AL, Lowengrub J, Lander AD (2016) Feedback, lineages and self-organizing morphogenesis. PLoS Comput Biol 12(3):e1004814. doi:10.1371/journal.pcbi.1004814

    Article  Google Scholar 

  • Lander AD, Gokoffski KK, Wan FYM, Nie Q, Calof AL (2009) Cell lineages and the logic of proliferative control. PLoS Biol 7(1). doi:10.1371/journal.pbio.1000015

  • Lee N, Smolarz AJ, Olson S, David O, Reiser J, Kutner R, Daw NC, Prockop DJ, Horwitz EM, Gregory CA (2007) A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br J Cancer 97(11):1552–1559. doi:10.1038/sj.bjc.6604069

    Article  Google Scholar 

  • Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90:105–156. doi:10.1016/S0163-7258(01)00132-2

    Article  Google Scholar 

  • Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, Xia S, Trageser D, Guerrero-Cazares H, Eberhart CG, Quinones-Hinojosa A, Scheffler B, Laterra J (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 108(24):9951–9956

    Article  Google Scholar 

  • Lim YC, Kang HJ, Moon JH (2014) C-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncol 50(7):633–639. doi:10.1016/j.oraloncology.2014.04.004

    Article  Google Scholar 

  • Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1):R1–R9. doi:10.1088/0951-7715/23/1/r01 NIHMS150003

    Article  MathSciNet  MATH  Google Scholar 

  • Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Medical Princ Pract 14(Suppl 1):35–48. doi:10.1159/000086183

    Article  Google Scholar 

  • Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-beta in cancer. J Pathol 223(2):205–218. doi:10.1002/path.2785

    Article  Google Scholar 

  • Mirams GR, Fletcher AG, Maini PK, Byrne HM (2012) A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt. J Theor Biol 312:143–156. doi:10.1016/j.jtbi.2012.08.002

    Article  MathSciNet  MATH  Google Scholar 

  • Pham K, Frieboes HB, Cristini V, Lowengrub J (2011) Predictions of tumour morphological stability and evaluation against experimental observations. J R Soc Interface 8(54):16–29. doi:10.1098/rsif.2010.0194

    Article  Google Scholar 

  • Pin AL, Houle F, Huot J (2011) Recent advances in colorectal cancer research: the microenvironment impact. Cancer Microenviron 4(2):127–131. doi:10.1007/s12307-011-0070-y

    Article  Google Scholar 

  • Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713. doi:10.1101/gad.267103

    Article  Google Scholar 

  • Pitt-Francis J, Bernabeu MO, Cooper J, Garny A, Momtahan L, Osborne J, Pathmanathan P, Rodriguez B, Whiteley JP, Gavaghan DJ (2008) Chaste: using agile programming techniques to develop computational biology software. Philos Trans Ser A Math Phys Eng Sci 366(1878):3111–3136. doi:10.1098/rsta.2008.0096

    Article  Google Scholar 

  • Prasetyanti PR, Zimberlin CD, Bots M, Vermeulen L, Melo FDSE, Medema JP (2013) Regulation of stem cell self-renewal and differentiation by Wnt and Notch are conserved throughout the adenoma–carcinoma sequence in the colon. Mol Cancer 12(1):126. doi:10.1186/1476-4598-12-126

    Article  Google Scholar 

  • Reynolds A, Wharton N, Parris A, Mitchell E, Sobolewski A, Kam C, Bigwood L, El Hadi A, Münsterberg A, Lewis M, Speakman C, Stebbings W, Wharton R, Sargen K, Tighe R, Jamieson C, Hernon J, Kapur S, Oue N, Yasui W, Williams MR (2014) Canonical Wnt signals combined with suppressed TGF\(\beta \)/BMP pathways promote renewal of the native human colonic epithelium. Gut 63(4):610–621. doi:10.1136/gutjnl-2012-304067

    Article  Google Scholar 

  • Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science (New York, NY) 340(6137):1190–1194, doi:10.1126/science.1234852, arXiv:1011.1669v3

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi:10.1038/nature07935

    Article  Google Scholar 

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011a) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418. doi:10.1038/nature09637

    Article  Google Scholar 

  • Sato T, Stange DE, Ferrante M, Vries RGJ, Van Es JH, Van Den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772. doi:10.1053/j.gastro.2011.07.050

    Article  Google Scholar 

  • Schepers A, Clevers H (2012) Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harbor Perspect Biol 4(4): doi:10.1101/cshperspect.a007989

  • Schuijers J, Clevers H (2012) Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. The EMBO J 31(13):3031–3032. doi:10.1038/emboj.2012.177

    Article  Google Scholar 

  • Sciumè G, Shelton S, Gray WG, Miller CT, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2013) A multiphase model for three-dimensional tumor growth. New J Phys 15: doi:10.1088/1367-2630/15/1/015005

  • Sell S (2004) Stem cell origin of cancer and differentiation therapy. doi:10.1016/j.critrevonc.2004.04.007

  • Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664. doi:10.1038/nrm3873 NIHMS150003

    Article  Google Scholar 

  • Smallbone K, Corfe BM (2014) A mathematical model of the colon crypt capturing compositional dynamic interactions between cell types. Int J Exp Pathol 95(1):1–7. doi:10.1111/iep.12062

    Article  Google Scholar 

  • Sottoriva A, Verhoeff JJC, Borovski T, McWeeney SK, Naumov L, Medema JP, Sloot PMA, Vermeulen L (2010) Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res 70(1):46–56. doi:10.1158/0008-5472.CAN-09-3663

    Article  Google Scholar 

  • Stockhausen MT, Kristoffersen K, Stobbe L, Poulsen HS (2014) Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential. Cancer Biol Ther 15(2):216–224. doi:10.4161/cbt.26736

    Article  Google Scholar 

  • Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Za Cooper, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Ja Wargo, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504. doi:10.1038/nature11183 PMCID: PMC3711467

    Article  Google Scholar 

  • Tzamali E, Grekas G, Marias K, Sakkalis V (2014) Exploring the competition between proliferative and invasive cancer phenotypes in a continuous spatial model. PLoS ONE 9(8): doi:10.1371/journal.pone.0103191

  • Tzedakis G, Tzamali E, Marias K, Sakkalis V (2015) The importance of neighborhood scheme selection in agent-based tumor growth modeling. Cancer Inf 14:67–81. doi:10.4137/CIN.S19343

    Google Scholar 

  • Van De Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, Van Houdt W, Van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, Van Sluis P, Li VSW, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, Van Oudenaarden A, Saez-Rodriguez J, Vries RGJ, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945. doi:10.1016/j.cell.2015.03.053

    Article  Google Scholar 

  • Van Leeuwen IMM, Mirams GR, Walter A, Fletcher A, Murray P, Osborne J, Varma S, Young SJ, Cooper J, Doyle B, Pitt-Francis J, Momtahan L, Pathmanathan P, Whiteley JP, Chapman SJ, Gavaghan DJ, Jensen OE, King JR, Maini PK, Waters SL, Byrne HM (2009) An integrative computational model for intestinal tissue renewal. Cell Prolif 42(5):617–636. doi:10.1111/j.1365-2184.2009.00627.x 69549138171

    Article  Google Scholar 

  • Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476. doi:10.1038/ncb2048

    Article  Google Scholar 

  • Wasan HS, Park HS, Liu KC, Mandir NK, Winnett A, Sasieni P, Bodmer WF, Goodlad RA, Wright NA (1998) APC in the regulation of intestinal crypt fission. J Pathol 185(3):246–255. doi:10.1002/(SICI)1096-9896(199807)185:3<246::AID-PATH90>3.0.CO;2-8

    Article  Google Scholar 

  • Whissell G, Montagni E, Martinelli P, Hernando-Momblona X, Sevillano M, Jung P, Cortina C, Calon A, Abuli A, Castells A, Castellvi-Bel S, Nacht AS, Sancho E, Stephan-Otto Attolini C, Vicent GP, Real FX, Batlle E (2014) The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat Cell Biol 16(7):695–707. doi:10.1038/ncb2992

    Article  Google Scholar 

  • Wise S, Kim J, Lowengrub J (2007) Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J Comput Phys 226(1):414–446. doi:10.1016/j.jcp.2007.04.020

    Article  MathSciNet  MATH  Google Scholar 

  • Wise SM, Lowengrub J, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth-I. Model and numerical method. J Theor Biol 253(3):524–543. doi:10.1016/j.jtbi.2008.03.027

    Article  MathSciNet  Google Scholar 

  • Wise SM, Lowengrub J, Cristini V (2011) An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math Comput Model 53(1–2):1–20. doi:10.1016/j.mcm.2010.07.007

    Article  MathSciNet  MATH  Google Scholar 

  • Wong AS, Leung PC, Auersperg N (2000) Hepatocyte growth factor promotes in vitro scattering and morphogenesis of human cervical carcinoma cells. Gynecol Oncol 78(2):158–165. doi:10.1006/gyno.2000.5877

    Article  Google Scholar 

  • Wong VWY, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, van de Wetering M, Poulsom R, Na Wright, Trotter MWB, Watt FM, Winton DJ, Clevers H, Jensen KB (2012) Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 14(4):401–408. doi:10.1038/ncb2464

    Article  Google Scholar 

  • Youssefpour H, Li X, Lander AD, Lowengrub J (2012) Multispecies model of cell lineages and feedback control in solid tumors. J Theor Biol 304:39–59. doi:10.1016/j.jtbi.2012.02.030

    Article  Google Scholar 

  • Zhang L, Lander AD, Nie Q (2012) A reaction diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst Biol 6(1):93. doi:10.1186/1752-0509-6-93

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Arthur Lander and Marian Waterman for stimulating discussions. This work is supported in part by the National Science Foundation Division of Mathematical Sciences (HY, JSL), Grant P50GM76516 for the Center of Excellence in Systems Biology at the University of California, Irvine, P30CA062203 for the Chao Family Comprehensive Cancer Center at University of California, Irvine, and predoctoral Training Grant T32HD060555 from the Eunice Kennedy Shriver National Institute of Health and Human Development (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Lowengrub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 9097 KB)

Appendix

Appendix

1.1 Model Non-Dimensionalization

Let L be the length scale and \(\nabla '=\nabla /L\) be the dimensionless gradient. Following Wise et al. (2011), we choose L to be the nutrient diffusion length \(L=\sqrt{D_n/u_n^\mathrm{SC}}\), typically on the order of 200 \(\upmu \)m. Since the nutrient concentration is measured against that in the microenvironment, we non-dimensionalize n as \(n'=n/\bar{n}\). We rewrite Eq. (14) for the dimensionless nutrient concentration \(n'\):

$$\begin{aligned} 0=\varDelta 'n'-\left( \phi _\mathrm{SC}+u_n'^\mathrm{CP}\phi _\mathrm{CP}+u_n'^\mathrm{TD}\phi _\mathrm{TD}\right) n'+p_n'Q(\phi _T)(1-n'), \end{aligned}$$
(20)

where \(u_n'^\mathrm{CP}=u_n^\mathrm{CP}/u_n^\mathrm{SC}\), \(u_n'^\mathrm{TD}=u_n^\mathrm{TD}/u_n^\mathrm{SC}\) and \(p_n'=p_n/u_n^\mathrm{SC}\).

Next, we non-dimensionalize Eq. (1). Let T be the timescale and \(t'=t/T\) be the dimensionless time. Denote \(\mathbf u '=\mathbf u /(L/T)\), \(M'=M/\bar{M}\) and \(\mu '=\mu /\bar{\mu }\) as the non-dimensionalized cell velocity, mobility and chemical potential, respectively. We write Eq. (1) for \(\phi _T\) as

$$\begin{aligned} \displaystyle {\frac{1}{T\lambda _m^\mathrm{SC}\bar{n}}}\left( \displaystyle {\frac{\partial \phi _T}{\partial t'}}+\nabla '\cdot \left( \mathbf u '\phi _T\right) \right) =\displaystyle {\frac{\bar{M}\bar{\mu }}{L^2\lambda _m^\mathrm{SC}\bar{n}}}\nabla '\cdot \left( M'\phi _T\nabla '\mu '\right) +n'\phi _\mathrm{SC}+\lambda _m'^\mathrm{CP}n'\phi _\mathrm{CP}-\lambda '_L\phi _D. \end{aligned}$$
(21)

We choose timescale \(T=\left( \lambda _m^\mathrm{SC}\bar{n}\right) ^{-1}\) and \(\displaystyle {\frac{\bar{M}\bar{\mu }}{L^2\lambda _m^\mathrm{SC}\bar{n}}}=1\). \(\lambda _m'^\mathrm{CP}=\lambda _m^\mathrm{CP}/\lambda _m^\mathrm{SC}\), \(\lambda _L=\lambda _L/\lambda _m^\mathrm{SC}\). Analogously, the dimensionless equations for other cell species are

$$\begin{aligned} \displaystyle {\frac{\partial \phi _i}{\partial t'}}+\nabla '\cdot \left( \mathbf u '\phi _i\right) =\nabla '\cdot \left( M'\phi _i\nabla '\mu '\right) +\hbox {Src}'_i, \end{aligned}$$
(22)

where \(i=\hbox {SC},\hbox {CP},\hbox {TD}\) or D, and the dimensionless source terms are

$$\begin{aligned} \begin{aligned} \hbox {Src}'_\mathrm{SC}&=n'\phi _\mathrm{SC}\cdot (2p_0-1)-\lambda _n'^\mathrm{SC}\mathscr {H}({\tilde{n}}_\mathrm{SC}-n)\phi _\mathrm{SC}\\ \hbox {Src}'_\mathrm{CP}&=n'\phi _\mathrm{SC}\cdot 2(1-p_0)+\lambda _m'^\mathrm{CP}n'\phi _\mathrm{CP}\cdot (2p_1-1)-\lambda _n'^\mathrm{CP}\mathscr {H}({\tilde{n}}_\mathrm{CP}-n)\phi _\mathrm{CP}\\ \hbox {Src}'_\mathrm{TD}&=\lambda _m'^\mathrm{CP}n'\phi _\mathrm{CP}\cdot 2(1-p_1)-\lambda _n'^\mathrm{TD}\mathscr {H}({\tilde{n}}_\mathrm{TD}-n)\phi _\mathrm{TD}-\lambda _a'^\mathrm{TD}\phi _\mathrm{TD}\\ \hbox {Src}'_D&=\lambda _n'^\mathrm{SC}\mathscr {H}({\tilde{n}}_\mathrm{SC}-n)\phi _\mathrm{SC}+\lambda _n'^\mathrm{CP}\mathscr {H}({\tilde{n}}_\mathrm{CP}-n)\phi _\mathrm{CP}+\lambda _n'^\mathrm{TD}\mathscr {H}({\tilde{n}}_\mathrm{TD}-n)\phi _\mathrm{TD}\\&\quad +\lambda _a'^\mathrm{TD}\phi _\mathrm{TD}-\lambda _L'\phi _D, \end{aligned} \end{aligned}$$
(23)

where \(\lambda _n'^\mathrm{SC}=\lambda _n^\mathrm{SC}/\lambda _m^\mathrm{SC}\), \(\lambda _n'^\mathrm{CP}=\lambda _n^\mathrm{CP}/\lambda _m^\mathrm{SC}\), \(\lambda _n'^\mathrm{TD}=\lambda _n^\mathrm{TD}/\lambda _m^\mathrm{SC}\) and \(\lambda _L'=\lambda _L/\lambda _m^\mathrm{SC}\).

The dimensionless velocity \(\mathbf u '\) satisfies \(\displaystyle {\frac{L}{T}}{} \mathbf u '=-\displaystyle {\frac{\bar{p}}{L}}\nabla 'p'+\displaystyle {\frac{\bar{\mu }}{L}}\displaystyle {\frac{\lambda }{\varepsilon }}\mu '\nabla '\phi _T\), where \(p'=p/\bar{p}\) is the dimensionless pressure. We choose \(\bar{p}=\bar{\mu }=L^2/T\), then

$$\begin{aligned} \mathbf u '=-\nabla 'p'+\displaystyle {\frac{\lambda }{\varepsilon }}\mu '\nabla '\phi _T. \end{aligned}$$
(24)

The dimensionless equation for \(T_1\) is

$$\begin{aligned} 0=\varDelta ' C_{T_1})-\left( u_{T_1}'^\mathrm{SC}\phi _\mathrm{SC}+d'_{T_1}\right) C_{T_1}+p'_{T_1}\phi _\mathrm{TD}, \end{aligned}$$
(25)

where \(u_{T_1}'^\mathrm{SC}=u_{T_1}^\mathrm{SC}/D_{T_1}\), \(d'_{T_1}=d_{T_1}/D_{T_1}\) and \(p'_{T_1}=p_{T_1}/D_{T_1}\). The equation of \(T_2\) can be non-dimensionalized similarly.

We now non-dimensionalize Eq. (12):

$$\begin{aligned} \begin{aligned} \displaystyle {\frac{\partial C_W}{\partial t'}}+\nabla '\cdot (\mathbf u '_w C_W)&=\nabla '(D_W'\nabla ' C_W)+{\bar{\gamma }}' F'(C_W,C_{WI}),\\ \displaystyle {\frac{\partial C_{WI}}{\partial t'}}+\nabla '\cdot (\mathbf u '_w C_{WI})&=\nabla '(D_{WI}'\nabla C_{WI})+{\bar{\gamma }}' G'(C_W,C_{WI}), \end{aligned} \end{aligned}$$
(26)

where \(D_W'=\displaystyle {\frac{T}{L^2}}D_W\) and \(D_{WI}'=\displaystyle {\frac{T}{L^2}}D_{WI}\). We take \({\bar{\gamma }}'=\displaystyle {\frac{T}{L^2p_W\bar{n}}}\bar{\gamma }\) and reaction terms

$$\begin{aligned} \begin{aligned} F'(C_W,C_{WI})&=\displaystyle {\frac{C_W^2}{C_{WI}}}n'\phi _\mathrm{SC}-d_W'C_W+u_0'n'(\phi _T-\phi _D),\\ G'(C_W,C_{WI})&=p_{WI}'C_W^2n'\phi _\mathrm{SC}-d_{WI}'C_{WI}, \end{aligned} \end{aligned}$$
(27)

where \(d_W'=\displaystyle {\frac{d_W}{p_W\bar{n}}}\), \(u_0'=\displaystyle {\frac{u_0}{p_W\bar{n}}}\), \(p_{WI}'=\displaystyle {\frac{p_{WI}}{p_W\bar{n}}}\) and \(d_{WI}'=\displaystyle {\frac{d_{WI}}{p_W\bar{n}}}\).

The non-dimensionalized equations can be obtained by dropping the prime notation in Eqs. (20)–(27). Model parameters for Figs. 2 and 8 are listed in Tables 1 and 2 respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Konstorum, A. & Lowengrub, J.S. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth. Bull Math Biol 80, 1404–1433 (2018). https://doi.org/10.1007/s11538-017-0294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0294-1

Keywords

Navigation