Skip to main content
Log in

Integrated Inflammatory Stress (ITIS) Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

During the last decade, there has been an increasing interest in the coupling between the acute inflammatory response and the Hypothalamic–Pituitary–Adrenal (HPA) axis. The inflammatory response is activated acutely by pathogen- or damage-related molecular patterns, whereas the HPA axis maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing the interactions between the subsystems in the ITIS model are formulated based on biological reasoning and its ability to describe clinical data. The ITIS model is calibrated and validated by simulating various scenarios related to endotoxin (LPS) exposure. The model is capable of reproducing human data of tumor necrosis factor alpha, adrenocorticotropic hormone (ACTH) and cortisol and suggests that repeated LPS injections lead to a deficient response. The ITIS model predicts that the most extensive response to an LPS injection in ACTH and cortisol concentrations is observed in the early hours of the day. A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clock. Neuron 74(2):246–260. doi:10.1016/j.neuron.2012.04.006

    Article  Google Scholar 

  • Amersfoort ESV, Berkel TJCV, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16(3):379–414. doi:10.1128/CMR.16.3.379-414.2003

    Article  Google Scholar 

  • Andersen M, Vinther F, Ottesen JT (2013) Mathematical modeling of the hypothalamic–pituitary–adrenal gland (HPA) axis, including hippocampal mechanisms. Math Biosci 246(1):122–138. doi:10.1016/j.mbs.2013.08.010

  • Asachenkov A, Marchuk G, Mohler R, Zuev S (1994) Disease dynamics. Birkhäuser, Basel

    MATH  Google Scholar 

  • Baker M, Denman-Johnson S, Brook BS, Gaywood I, Owen MR (2013) Mathematical modelling of cytokine-mediated inflammation in rheumatoid arthritis. Math Med Biol 30(4):311–337. doi:10.1093/imammb/dqs026

    Article  MathSciNet  MATH  Google Scholar 

  • Bangsgaard EO (2016) Mathematical modelling of the dynamic role of the HPA axis in the immune system. Master’s thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science. Supervisor: Poul G. Hjorth, pghj@dtu.dk, DTU Compute

  • Bangsgaard EO, Ottesen JT (2016) Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Math Biosci. doi:10.1016/j.mbs.2016.10.007

    Google Scholar 

  • Beishuizen A, Thijs LG (2003) Reviews: endotoxin and the hypothalamo–pituitary–adrenal (HPA) axis. Innate Immun 9(1):3–24. doi:10.1177/09680519030090010101

    Google Scholar 

  • Bianchi M (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5. doi:10.1177/09680519030090010101

    Article  Google Scholar 

  • Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48:445–453

    Article  Google Scholar 

  • Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D, Betten B, Bartels J, Constantine G, Fink MP, Billiar TR, Vodovotz Y (2005) The acute inflammatory response in diverse shock states. Shock 24(1):74–84. doi:10.1097/01.shk.0000168526.97716.f3

    Article  Google Scholar 

  • Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32(10):2061–2070

    Article  Google Scholar 

  • Clodi M, Vila G, Geyeregger R, Riedl M, Stulnig TM, Struck J, Luger TA, Luger A (2008) Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab 295:686–691

    Article  Google Scholar 

  • Conrad M, Hubold C, Fischer B, Peters A (2009) Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negtive feedback. J Biol Phys 35:149–162. doi:10.1007/s10867-009-9134-3

    Article  Google Scholar 

  • Copeland S, Warren HS, Lowry SF, Calcano SE, Remick D (2005) Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol 12(1):60–67. doi:10.1128/CDLI.12.1.60-67.2005

    Google Scholar 

  • Day J, Rubin J, Vodovotz Y, Chow C, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin adminstration. J Theor Biol 242:237–256. doi:10.1016/j.jtbi.2006.02.015

    Article  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  Google Scholar 

  • Frank DO (2010) Derivation and parameter estimation of a reduced mathematical model of acute inflammatory response to endotoxin challenge. Ph.D. thesis, North Carolina State University

  • Gupta S, Aslakson E, Gurbaxani BM, Vernon SD (2007) Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theor Biol Med Model. doi:10.1186/1742-4682-4-8

    Google Scholar 

  • Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 75:132–140. doi:10.1161/HYPERTENSIONAHA.110.163576

    Article  Google Scholar 

  • Herald MC (2010) General model of inflammation. Bull Math Biol. doi:10.1007/s11538-009-9468-9

    MathSciNet  MATH  Google Scholar 

  • Jans Ø, Brinth L, Kehlet H, Mehlsen J (2015a) Decreased heart rate variability responses during early postoperative mobilization-an observational study. BMC Anesthesiol. doi:10.1186/s12871-015-0099-4

  • Jans Ø, Mehlsen J, Kjærgaard-Andersen P, Husted H, Solgaard S, Josiassen J, Lunn TH, Kehlet H (2015b) Oral midodrine hydrochloride for prevention of orthostatic hypotension during early mobilization after hip arthroplasty: a randomized, double-blind, placebo-controlled trial. J AM Soc Anesthesiol 123(6):1292–1300. doi:10.1097/ALN.0000000000000890

  • Jelić S, Čupić Ž, Kolar-Anić L (2005) Mathematical modeling of the hypothalamic–pituitary–adrenal system activity. Math Biosci 197:173–187. doi:10.1016/j.mbs.2005.06.006

    Article  MathSciNet  MATH  Google Scholar 

  • John CD, Buckingham JC (2003) Cytokines: regulation of the hypothalamo–pituitary–adrenocortical axis. Curr Opin Pharmacol 3(1):78–84. doi:10.1016/S1471-4892(02)00009-7

    Article  Google Scholar 

  • Liakos P, Lenz D, Bernhardt R, Feige JJ, Defaye G (2003) Transforming growth factor \(\beta \)1 inhibits aldosterone and cortisol production in the human adrenocortical cell line NCI-H295R through inhibition of CYP11B1 and CYP11B2 expression. J Endocrinol 176:69–82

    Article  Google Scholar 

  • Loosbroock C, Hunter KW (2014) Inhibiting TNF-signaling does not attenuate induction of endotoxin tolerance. J Inflam Res 7:159–167. doi:10.2147/JIR.S75037

    Google Scholar 

  • Madsen AM (2006) Airbone endotoxin in different background environments and seasons. Ann Agric Environ Med 13:81–86

    Google Scholar 

  • Malek H, Ebadzadeh MM, Safabakhsh R, Razavi A, Zaringhalam J (2015) Dynamics of the HPA axis and inflammatory cytokines: insights from mathematical modeling. Comput Biol Med 67:1–12. doi:10.1016/j.compbiomed.2015.09.018

    Article  Google Scholar 

  • Meyer-Hermann M, Figge MT, Straub RH (2009) Mathematical modeling of the circadian rhythm of key neuroendocrine-immune system players in rheumatoid arthritis. Arthritis Rheum 60:2585–2594. doi:10.1002/art.24797

    Article  Google Scholar 

  • Nieman G, Brown D, Sarkar J, Kubiak B, Ziraldo C, Dutta-Moscato J, Vieau C, Barclay D, Gatto L, Maier K, Constantine G, Billiar TR, Zamora R, Mi Q, Chang S, Vodovotz Y (2012) A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med 40(4):1052–1063. doi:10.1097/CCM.0b013e31823e986a

    Article  Google Scholar 

  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  Google Scholar 

  • Rankin J, Walker JJ, Windle R, Lightman SL, Terry JR (2012) Characterizing dynamic interactions between ultradian glucocorticoid rhythmicity and acute stress using the phase response curve. PLoS ONE. doi:10.1371/journal.pone.0030978

    Google Scholar 

  • Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout GB (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242(1):220–236. doi:10.1016/j.jtbi.2006.02.016

    Article  MathSciNet  Google Scholar 

  • Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009) Anti-inflammatory and pro-inflammatory roles of TGF-\(\beta \), IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9:447–453. doi:10.1016/j.coph.2009.04.008

    Article  Google Scholar 

  • Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. BBA-Mol Cell Res 1813(5):878–888

    Google Scholar 

  • Silverman MN, Pearce BD, Biron CA, Miller AH (2005) Immune modulation of the hypothalamic–pituitary–adrenal (HPA) axis during viral infection. Viral Immunol 18(1):41–78. doi:10.1089/vim.2005.18.41

    Article  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328. doi:10.1038/nri1810

    Article  Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859. doi:10.1038/nature01321

    Article  Google Scholar 

  • Vedder H, Schreiber W, Yassouridis A, Gudewill S, Galanos C, Pollmcher T (1999) Dose-dependence of bacterial lipopolysaccharide (LPS) effects on peak response and time course of the immune-endocrine host response. Inflam Res 48:67–74. doi:10.1007/s000110050408

    Article  Google Scholar 

  • Walker JJ, Spiga F, Waite E, Zhao Z, Kershaw Y, Terry JR, Lightman SL (2012) The origin of glycocorticoid hormone oscillations. PLoS Biol 10(6):69–82. doi:10.1371/journal.pbio.1001341

    Article  Google Scholar 

  • Webster JI, Sternberg EM (2004) Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and clucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. J Endocrinol 181:207–221. doi:10.1677/joe.0.1810207

    Article  Google Scholar 

  • Yeager MP, Rassias AJ, Pioli PA, Beach ML, Wardwell K, Collins JE, Lee HK, Guyre PM (2009) Pretreatment with stress cortisol enhances the human systemic inflammatory response to bacterial endotoxin. Crit Care Med. doi:10.1097/CCM.0b013e3181a592b3

    Google Scholar 

  • Zuev SM, Kingsmore SF, Gessler DDG (2006) Sepsis progression and outcome: a dynamical model. Theor Biol Med Model. doi:10.1186/1742-4682-3-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny T. Ottesen.

Appendix

Appendix

1.1 Parameter Values

The parameter values used for the simulations of the ITIS model (1)–(2) presented in Sect. 2 and the biological interpretation are shown in Table 1.

Table 1 Table of biological interpretation and values of parameters in the ITIS model presented in Sect. 2

1.2 Sensitivity Analysis

The relative sensitivities of the parameters in the ITIS model are calculated to investigate the quantitative sensitivity and the robustness of the results of the model output. The relative sensitivity of a model output \(y_i\) to the model parameters \(\theta _j\) where \(j=1,\ldots ,q\) can be calculated from the sensitivity matrix

$$\begin{aligned} S^{\mathrm{relative}}_{i} = \left[ \begin{array}{ccc} \frac{\theta _1}{y_i} \frac{\partial y_i}{\partial \theta _1}(t_{i1}) &{} \cdots &{} \frac{\theta _q}{y_i} \frac{\partial y_i}{\partial \theta _q}(t_{i1}) \\ \vdots &{} \ddots &{}\vdots \\ \frac{\theta _1}{y_i} \frac{\partial y_i}{\partial \theta _1}(t_{ik_i})&{} \cdots &{} \frac{\theta _q}{y_i} \frac{\partial y_i}{\partial \theta _q}(t_{ik_i}) \end{array}\right] \end{aligned}$$
(3)

for each of the variables i in the model, where \(t_{ij}\) is the \(k_i\) instance of the jth measurement and \(y_i \ne 0\). To compare the sensitivities, the two-norm of each column can be calculated and used as a time independent measure for each of the parameters. A histogram stacking the relative sensitivities for the variables in the ITIS model is shown in Fig. 9.

Fig. 9
figure 9

Histogram of the relative sensitivities of the parameters in the ITIS model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangsgaard, E.O., Hjorth, P.G., Olufsen, M.S. et al. Integrated Inflammatory Stress (ITIS) Model. Bull Math Biol 79, 1487–1509 (2017). https://doi.org/10.1007/s11538-017-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0293-2

Keywords

Navigation