Skip to main content
Log in

Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The hypothalamus–pituitary–adrenal (HPA) system is closely related to stress and the restoration of homeostasis. This system is stimulated in the second half of the night, decreases its activity in the daytime, and reaches the homeostatic level during the late evening. In this paper, we derive and discuss a novel model for the HPA system. It is based on three simple rules that constitute a principle of homeostasis and include only the most substantive physiological elements. In contrast to other models, its main components include, apart from the conventional negative feedback ingredient, a positive feedback loop. To validate the model, we present a parameter estimation procedure that enables one to adapt the model to clinical observations. Using this methodology, we are able to show that the novel model is capable of simulating clinical trials. Furthermore, the stationary state of the system is investigated. We show that, under mild conditions, the system always has a well-defined set-point, which reflects the clinical situation to be modeled. Finally, the computed parameters may be interpreted from a physiological point of view, thereby leading to insights about diseases like depression, obesity, or diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Swanson, L.W.: Cerebral hemisphere regulation of motivated behavior. Brain Res. 886(1–2), 113–164 (2000)

    Article  Google Scholar 

  2. Oltmanns, K.M., Fehm, H.L., Peters, A.: Chronic fentanyl application induces adrenocortical insufficiency. J. Intern. Med. 257(5), 478–480 (2005)

    Article  Google Scholar 

  3. Wagner, U., Degirmenci, M., Drosopoulos, S., Perras, B., Born, J.: Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory. Biol. Psychiatry 58(11), 885–893 (2005)

    Article  Google Scholar 

  4. McEwen, B.S., Weiss, J.M., Schwartz, L.S.: Selective retention of corticosterone by limbic structures in rat brain. Nature 220(170), 911–912 (1968)

    Article  ADS  Google Scholar 

  5. De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., Joëls, M.: Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19(3), 269–301 (1998)

    Article  Google Scholar 

  6. Born, J., Fehm, H.L.: Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Exp. Clin. Endocrinol. Diabetes 106(3), 153–163 (1998)

    Google Scholar 

  7. Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K.M., Conrad, M., Schultes, B., Born, J., Fehm, H.L.: The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28(2), 143–180 (2004)

    Article  Google Scholar 

  8. Peters, A., Conrad, M., Hubold, C., Schweiger, U., Fischer, B., Fehm, H.L.: The principle of homeostasis in the hypothalamus–pituitary–adrenal system: new insight from positive feedback. Am. J. Physiol. 293(1), R83–R98 (2007)

    Google Scholar 

  9. Bergman, R.N., Ider, Y.Z., Bowden, C.R., Cobelli, C.: Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236(6), E667–E677 (1979)

    Google Scholar 

  10. Swan, G.W.: Applications of Optimal Control Theory in Biomedicine. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  11. Khoo, M.C.K.: Physiological Control Systems: Analysis, Simulation, and Estimation. IEEE Press Series on Biomedical Engineering. IEEE, New York (1999)

    MATH  Google Scholar 

  12. Bingzheng, L., Zhenye, Z., Liansong, C.: A mathematical model of the regulation system of the secretion of glucocorticoids. J. Biol. Phys. 17, 221–233 (1990)

    Article  Google Scholar 

  13. Keenan, D.M., Licinio, J., Veldhuis, J.D.: A feedback-controlled ensemble model of the stress-responsive hypothalamo–pituitary–adrenal axis. Proc. Natl. Acad. Sci. U. S. A 98, 4028–4033 (2001)

    Article  ADS  Google Scholar 

  14. Jelić, S., Željko Čupić, Kolar-Anić, L.: Mathematical modeling of the hypothalamic–pituitary–adrenal system activity. Math. Biosci. 197(2), 173–187 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gonzalez-Heydrich, J., Steingard, R.J., Putnam, F.W., Bellis, M.D.D., Beardslee, W., Kohane, I.S.: Corticotropin releasing hormone increases apparent potency of adrenocorticotropic hormone stimulation of cortisol secretion. Med. Hypotheses 57(5), 544–548 (2001)

    Article  Google Scholar 

  16. Kyrylov, V., Severyanova, L.A., Vieira, A.: Modeling robust oscillatory behavior of the hypothalamic–pituitary–adrenal axis. IEEE Trans. Biomed. Eng. 52(12), 1977–1983 (2005)

    Article  Google Scholar 

  17. Lenbury, Y., Pornsawad, P.: A delay-differential equation model of the feedback-controlled hypothalamus–pituitary–adrenal axis in humans. Math. Med. Biol. 22(1), 15–33 (2005)

    Article  MATH  Google Scholar 

  18. Fehm, H.L., Voigt, K.H., Lang, R.E., Beinert, K.E., Kummer, G.W., Pfeiffer, E.F.: Paradoxical ACTH response to glucocorticoids in Cushing’s disease. N. Engl. J. Med. 297(17), 904–907 (1977)

    Article  Google Scholar 

  19. Murray, J.D.: Mathematical Biology I, 3 edn. Springer, New York (2002)

    Google Scholar 

  20. Ono, N., Bedran de Castro, J.C., McCann, S.M.: Ultrashort-loop positive feedback of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. Proc. Natl. Acad. Sci. U. S. A. 82(10), 3528–3531 (1985)

    Article  ADS  Google Scholar 

  21. Drolet, G., Rivest, S.: Corticotropin-releasing hormone and its receptors; an evaluation at the transcription level in vivo. Peptides 22(5), 761–767 (2001)

    Article  Google Scholar 

  22. Katzper, M.: Adrenal dynamics and corticosteroids. In: Proceedings of the 2003 International Symposium on Health Sciences Simulation, pp. 93–96 (2003)

  23. Savić, D., Jelić, S.: A theoretical study of hypothalamo-pituitary-adrenocortical axis dynamics. Ann. N.Y. Acad. Sci. 1048, 430–432 (2005)

    Article  ADS  Google Scholar 

  24. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC, Boca Raton (1999)

    MATH  Google Scholar 

  25. Chrousos, G.P.: Ultradian, circadian, and stress-related hypothalamic–pituitary–adrenal axis activity—a dynamic digital-to-analog modulation. Endocrinology 139(2), 437–440 (1998)

    Article  Google Scholar 

  26. Lenbury, Y., Pacheenburawana, P.: Modelling fluctuation phenomena in the plasma cortisol secretion system in normal man. BioSystems 26(2), 117–125 (1991)

    Article  Google Scholar 

  27. Reul, J.M., de Kloet, E.R.: Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117(6), 2505–2511 (1985)

    Article  Google Scholar 

  28. Raol, J.R., Girija, G., Singh, J.: Modelling and Parameter Estimation of Dynamic Systems (IEE Control Engineering). Institution of Engineering and Technology, Herts (2004)

    Google Scholar 

  29. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Conrad, M., Hubold, C., Fischer, B., Schweiger, U., Fehm, H.L., Peters, A.: The “principle of balance”: how do biological systems become homeostatic? (abstract). Exp. Clin. Endocrinol. Diabetes 114, 469 (2006)

    Google Scholar 

  31. Veldhuis, J.D., Iranmanesh, A., Naftolowitz, D., Tatham, N., Cassidy, F., Carroll, B.J.: Corticotropin secretory dynamics in humans under low glucocorticoid feedback. J. Clin. Endocrinol. Metab. 86(11), 5554–5563 (2001)

    Article  Google Scholar 

  32. Calabrese, E.J., Baldwin, L.A.: Toxicology rethinks its central belief. Nature 421(6924), 691–692 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (Clinical Research Group KFO-126) from the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Conrad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, M., Hubold, C., Fischer, B. et al. Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback. J Biol Phys 35, 149–162 (2009). https://doi.org/10.1007/s10867-009-9134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9134-3

Keywords

Navigation