Skip to main content

Advertisement

Log in

A Mathematical Model of Water and Nutrient Transport in Xylem Vessels of a Wheat Plant

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Araus, J. L., Alegre, L., Tapia, L., & Calafell, R. (1986). Relationship between leaf structure and gas exchange in wheat leaves at different insertion levels. J. Exp. Bot., 37(9), 1323–1333.

    Article  Google Scholar 

  • Bennett, E., & Elser, J. (2011). A broken biogeochemical cycle. Nature, 478.

  • Bingham, I. J., & Stevenson, E. A. (1993). Control of root growth: effects of carbohydrates on the extension, branching and rate of respiration of different fractions of wheat roots. Physiol. Plant., 88(1), 149–158.

    Article  Google Scholar 

  • Bowen, G. D. (1970). Effects of soil temperature on root growth and on phosphate uptake along Pinus radiata roots. Soil Res., 8(1), 31–42.

    Article  Google Scholar 

  • Bucher, M. (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol., 173(1), 11–26.

    Article  Google Scholar 

  • Caldwell, M. M., Dawson, T. E., & Richards, J. H. (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113(2), 151–161.

    Article  Google Scholar 

  • Campbell, N. A. (2008). Resource acquisition and transport in vascular plants. In N. A. Campbell (Ed.), Biology, (9th edn.) (pp. 764–784). San Francisco; London: Pearson/Benjamin Cummings.

    Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Glob. Environ. Change, 19(2), 292–305.

    Article  Google Scholar 

  • Dixon, H. H., & Joly, J. (1895). On the ascent of sap. Philos. Trans. R. Soc. Lond. Ser. B., 186, 563–576.

    Article  Google Scholar 

  • Foyer, C., & Spencer, C. (1986). The relationship between phosphate status and photosynthesis in leaves. Planta, 167(3), 369–375.

    Article  Google Scholar 

  • Frensch, J., & Steudle, E. (1989). Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol., 91(2), 719–726.

    Article  Google Scholar 

  • Gallet, A., Flisch, R., Ryser, J. P., Frossard, E., & Sinaj, S. (2003). Effect of phosphate fertilization on crop yield and soil phosphorus status. J. Plant Nutr. Soil Sci., 166(5), 568–578.

    Article  Google Scholar 

  • Hinch, E. J. (1991). Perturbation methods (Vol. 6). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Jensen, K. H., Berg-Srensen, K., Friis, S. M., & Bohr, T. (2012). Analytic solutions and universal properties of sugar loading models in Münch phloem flow. J. Theor. Biol., 304, 286–296.

    Article  Google Scholar 

  • Jensen, K. H., Lee, J., Bohr, T., Bruus, H., Holbrook, N. M., & Zwieniecki, M. A. (2011). Optimality of the Münch mechanism for translocation of sugars in plants. J. R. Soc. Interface, 8(61), 1155–1165.

    Article  Google Scholar 

  • Jones, H., Tomos, A. D., Leigh, R. A., & Jones, R. G. W. (1983). Water-relation parameters of epidermal and cortical cells in the primary root of Triticum aestivum L. Planta, 158(3), 230–236.

    Article  Google Scholar 

  • Kramer, P. J., & Boyer, J. S. (1995). Water relations of plants and soils (pp. 201–256). San Diego: Academic Press.

    Google Scholar 

  • Kutschera, L., Lichtenegger, E., & Sobotik, M. (2009). Wurzelatlas der Kulturpflanzen gemigter Gebiete mit Arten des Feldgemsebaues. Frankfurt: DLG-Verlag.

    Google Scholar 

  • Landsberg, J. J., & Fowkes, N. D. (1978). Water movement through plant roots. Ann. Bot., 42(3), 493–508.

    Article  Google Scholar 

  • Molz, F. J. (1981). Models of water transport in the soil–plant system: a review. Water Resour. Res., 17(5), 1245–1260.

    Article  Google Scholar 

  • Percival, J. (1921). The wheat plant. London: Duckworth and Co.

    Google Scholar 

  • Perry, R. H., & Green, D. W. (1997). Perry’s chemical engineers’ handbook (7th ed.). New York: McGraw Hill.

    Google Scholar 

  • Steudle, E. (2001). The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52(1), 847–875.

    Article  Google Scholar 

  • Steudle, E., & Peterson, C. A. (1998). How does water get through roots? J. Exp. Bot., 49(322), 775–788.

    Google Scholar 

  • Thompson, M. V., & Holbrook, N. M. (2003). Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J. Theor. Biol., 220(4), 419–455.

    Article  Google Scholar 

  • Tyree, M. T. (1997). The cohesion-tension theory of sap ascent: current controversies. J. Exp. Bot., 48(10), 1753–1765.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Helena Unwin for conducting a literature review on xylem vessel sizes in wheat. This work was sponsored by Defra, BBSRC (BB/J000868/1), Scottish Government, AHDB, and other industry partners through Sustainable Arable LINK Project LK09136 and the BBSRC (BB/I024283/1). Tiina Roose is funded by The Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Payvandi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 102 kB)

Appendices

Appendix A: Xylem Dimensions in Roots and Leaves

Table 4 Calculations of \(\hat{k}_{z}\) and 1/Pe in the root zone based on number and radii of xylem vessels in wheat from Percival (1921) (pp. 39–40). The number of vessels \(\hat{v}\) is given by the number of vessels per bundle multiplied by the number of bundles
Table 5 Calculations of \(\hat{k}_{z}\) and 1/Pe in the leaf zone based on number and radii of xylem vessels in the stout bundles of wheat from Percival (1921) (pp. 57–59). The number of vessels \(\hat{v}\) is given by the number of vessels per bundle multiplied by the number of bundles

Appendix B: Range of p 0 that Would Give Rise to Unidirectional Flow for p 0p ext and G≠0

$$\begin{aligned} p^{0L}_{|z=0} =& p^\mathrm{ext}+\frac{\sqrt{M^R}(p^\mathrm{soil}-p^\mathrm{ext})\kappa_1}{f(z_1, z_2)}+ \frac{G}{f(z_1,z_2)} \biggl(-2e^{\sqrt{M^R}(1+z_2)} \\ &{}+ \bigl(\kappa_2\!+\sqrt{M^R}(z_1\!-z_2) \kappa_1 \bigr)\cos \bigl(\sqrt{M^L}z_1\bigr)\!- \frac{\!\sqrt{M^R}\kappa_1\sin (\sqrt{M^L}z_1 )\!}{\sqrt{M^L}} \biggr), \end{aligned}$$
(31)
$$\begin{aligned} p^{0R}_{\mathrm{crit}|z=1} =& p^\mathrm{ext}+\cos\bigl( \sqrt{M^L}z_1\bigr) \bigl(p^\mathrm{soil}-p^\mathrm{ext} \bigr) + \frac{\mathit{Ge}^{-\sqrt{M^R}(z_2+1)}}{2} \\ &{}\times \biggl(\cos\bigl(\sqrt{M^L}z_1 \bigr) \biggl(\frac{\kappa_1}{\sqrt{M^R}}+\kappa_2(z_1-z_2) \biggr)-\frac{\kappa_2\sin (\sqrt{M^L}z_1 )}{\sqrt{M^L}} \biggr), \end{aligned}$$
(32)

where

$$\begin{aligned} f(z_1, z_2) =&\sqrt{M^R} \kappa_1\cos \bigl(\sqrt{M^L}z_1 \bigr) \\ &{}+\sqrt{M^L} \bigl(\kappa_2+ \sqrt{M^R}(z_1-z_2)\kappa_1\bigr)\sin \bigl(\sqrt{M^L}z_1 \bigr). \end{aligned}$$
(33)

Appendix C: Analytical Solution for Nutrient Transport by Convection and Diffusion

We seek an analytical solution for the transport of phosphate, n, due to both convection and diffusion, but consider that diffusion is only important near the boundaries z=0, z 1, z 2, 1. In the main bulk, convection dominates and we can neglect diffusion, but near the boundaries we expect the presence of boundary layers as the solution rapidly adjusts to the boundary conditions. For an introduction into boundary layer methods, see Hinch (1991). For simpler analytical progress we neglect the effect of gravity as its effect is small, and as an example assume that F is constant.

3.1 C.1 Root Zone

We first consider the root zone and the boundary near z=1. We let ϵ=1/Pe, which is small, such that the nutrient transport equation and boundary condition become

$$\begin{aligned} &\frac{d}{dz} \biggl(n^{R} \biggl(\frac{dp^{R}}{dz}-G \biggr) +\epsilon\frac{dn^{R}}{dz} \biggr)=-F^R, \end{aligned}$$
(34)
$$\begin{aligned} &\epsilon\frac{dn^{R}}{dz}=-f\quad\mbox{at}\ z=1. \end{aligned}$$
(35)

We scale \(n^{R}=\epsilon^{-1} f \bar{n}^{R}\), and integrate (34) to give

$$\begin{aligned} &\epsilon^{-1}\bar{n}^{R} \biggl(\frac{dp^{R}}{dz}-G \biggr) +\frac{d\bar{n}^{R}}{dz}=-\frac{F^R}{f}z+k_0, \end{aligned}$$
(36)
$$\begin{aligned} &\frac{d\bar{n}^{R}}{dz}=-1\quad \mbox{at}\ z=1, \end{aligned}$$
(37)

where k 0 is determined from the boundary condition (37) to be \(\frac{F^{R}-f}{f}\). We define the boundary layer coordinate x and let 1−z=ϵ α x, such that

$$\begin{aligned} &\epsilon^{-1}\bar{n}^{R} \tilde{R}_1- \epsilon^{-\alpha}\frac{d\bar{n}^{R}}{dx}=-\frac{F^R}{f}\bigl(1- \epsilon^{\alpha}x\bigr)+\frac{F^R-f}{f}, \end{aligned}$$
(38)
$$\begin{aligned} &\epsilon^{-\alpha}\frac{d\bar{n}^{R}}{dx}=1\quad\mbox{at}\ x=0, \end{aligned}$$
(39)

where \(\tilde{R}_{1}\) is \(\frac{dp^{R}}{dz}-G\) as a function of (1−ϵ α x), which we expand as follows:

$$\begin{aligned} \tilde{R}_1 =&\sqrt{M^R} \bigl(A_5e^{\sqrt{M^R}z}-A_6e^{-\sqrt{M^R}z}\bigr)-G \\ =&\sqrt{M^R} \biggl( \bigl(A_5e^{\sqrt{M^R}}-A_6e^{-\sqrt{M^R}}\bigr) \biggl(1+\frac{M^R\epsilon^{2\alpha}x^2}{2!}+O\bigl(\epsilon^{4\alpha}\bigr) \biggr) \\ &{}- \bigl(A_5e^{\sqrt{M^R}}+A_6e^{-\sqrt{M^R}} \bigr) \biggl(\sqrt{M^R}\epsilon^{\alpha}x+\frac{{M^R}^{\frac{3}{2}}\epsilon^{3\alpha}x^3}{3!}+O\bigl( \epsilon^{5\alpha}\bigr) \biggr) \biggr) \\ &{}-G. \end{aligned}$$
(40)

Setting G=0, we find that \(A_{5}e^{\sqrt{M^{R}}}-A_{6}e^{-\sqrt{M^{R}}}=0\) and

$$\begin{aligned} &A_5e^{\sqrt{M^R}}+A_6e^{-\sqrt{M^R}} \\ &\quad =\frac{2\sqrt{M^L}e^{\sqrt{M^R}(z_2+1)} (p^\mathrm{ext}-p^0 +\cos(\sqrt{M^L}z_1)(p^\mathrm{soil}-p^\mathrm{ext}) )}{\sqrt{M^R}\kappa_1\sin(\sqrt{M^L}z_1) -\sqrt{M^L} (\sqrt{M^R}(z_1-z_2)\kappa_1+\kappa_2 )\cos(\sqrt{M^L}z_1)}, \end{aligned}$$
(41)

which is negative for the parameter values considered (values of M L below those given by Eq. (22)). Therefore, with G=0, we find

$$\begin{aligned} &\tilde{R}_1=-\sqrt{M^R} \bigl(A_5e^{\sqrt{M^R}}+A_6e^{-\sqrt{M^R}}\bigr) \biggl(\sqrt{M^R}\epsilon^{\alpha}x+\frac{{M^R}^{\frac{3}{2}}\epsilon^{3\alpha}x^3}{3!}+O \bigl(\epsilon^{5\alpha}\bigr) \biggr), \end{aligned}$$
(42)

which we rewrite as \(\tilde{R}_{1}=\tilde{R}_{11}\epsilon^{\alpha}x+\tilde{R}_{13} \epsilon^{3\alpha}x^{3}+O(\epsilon^{5\alpha})\), and whose coefficients are positive and are given by

$$\begin{aligned} &\tilde{R}_{11}=-M^R \bigl(A_5e^{\sqrt{M^R}}+A_6e^{-\sqrt{M^R}}\bigr), \end{aligned}$$
(43)
$$\begin{aligned} &\tilde{R}_{13}=-\frac{{M^R}^{2}}{3!} \bigl(A_5e^{\sqrt{M^R}}+A_6e^{-\sqrt{M^R}}\bigr). \end{aligned}$$
(44)

Note that if G≠0 then \(A_{5}e^{\sqrt{M^{R}}}+A_{6}e^{-\sqrt{M^{R}}}=G/\sqrt{M^{R}}\) and hence the series would become \(\tilde{R}_{1}=\tilde{R}_{11}\epsilon^{\alpha}x+G\frac{M^{R}\epsilon^{2\alpha}x^{2}}{2!} +\tilde{R}_{13}\epsilon^{3\alpha}x^{3}+O(\epsilon^{4\alpha})\) which makes analytical progress more complicated. Therefore, with G=0, Eq. (38) becomes

$$\begin{aligned} &\epsilon^{-1}\bar{n}^{R} \bigl(\tilde{R}_{11} \epsilon^{\alpha}x+\tilde{R}_{13}\epsilon^{3\alpha}x^3+O \bigl(\epsilon^{5\alpha}\bigr) \bigr)-\epsilon^{-\alpha} \frac{d\bar{n}^{R}}{dx}=-\frac{F^R}{f}\bigl(1-\epsilon^{\alpha}x\bigr)+ \frac{F^R-f}{f}. \end{aligned}$$
(45)

In order for the viscous terms to balance the convective terms, we choose \(\alpha=\frac{1}{2}\) which leads to

$$\begin{aligned} &\bar{n}^{R} \bigl(\tilde{R}_{11}x+\tilde{R}_{13} \epsilon x^3+O\bigl(\epsilon^{2}\bigr) \bigr)- \frac{d\bar{n}^{R}}{dx}=-\frac{F^R}{f}\bigl(\epsilon^{\frac{1}{2}}-\epsilon x \bigr)+ \biggl(\frac{F^R-f}{f} \biggr)\epsilon^{\frac{1}{2}}, \end{aligned}$$
(46)
$$\begin{aligned} &\frac{d\bar{n}^{R}}{dx}=\epsilon^{\frac{1}{2}}\quad\mbox{at}\ x=0. \end{aligned}$$
(47)

We expand \(\bar{n}^{R}=\bar{n}^{R}_{0}+\epsilon^{\frac{1}{2}}\bar{n}^{R}_{1}+\epsilon \bar{n}^{R}_{2}+O(\epsilon^{\frac{3}{2}})\) and solve Eq. (46) at successive orders of ϵ subject to the boundary condition (47). The O(ϵ 0) terms of Eqs. (46) and (47) are

$$\begin{aligned} &\bar{n}^{R}_0\tilde{R}_{11}x- \frac{d\bar{n}^{R}_0}{dx}=0, \end{aligned}$$
(48)
$$\begin{aligned} &\frac{d\bar{n}^{R}_0}{dx}=0\quad\mbox{at}\ x=0, \end{aligned}$$
(49)

which have the solution \(\bar{n}^{R}_{0}=C_{0}e^{\frac{1}{2}\tilde{R}_{11}x^{2}}\), where C 0 is a free constant found by matching with the bulk solution. Since this solution grows as x increases, the only choice of C 0 is C 0=0, such that \(\bar{n}^{R}_{0}=0\).

The \(O(\epsilon^{\frac{1}{2}})\) terms of Eqs. (46) and (47) are

$$\begin{aligned} &\bar{n}^{R}_1\tilde{R}_{11}x- \frac{d\bar{n}^{R}_1}{dx}=-\frac{F^R}{f}+\frac{F^R-f}{f}, \end{aligned}$$
(50)
$$\begin{aligned} &\frac{d\bar{n}^{R}_1}{dx}=1\quad\mbox{at}\ x=0, \end{aligned}$$
(51)

which have the solution \(\bar{n}^{R}_{1}= \Bigl( \frac{1}{2} \sqrt{\frac{2\pi}{\tilde{R}_{11}}}\,\mbox{erf}\bigl(\frac{1}{2}\sqrt{2\tilde{R}_{11}}x\bigr) +C_{1} \Bigr) e^{\frac{1}{2}\tilde{R}_{11}x^{2}}\), where C 1 is a free constant found by matching with the bulk solution. To ensure a non-growing solution, we choose \(C_{1}=-\frac{1}{2}\sqrt{\frac{2\pi}{\tilde{R}_{11}}}\), such that

$$\begin{aligned} \bar{n}^{R}_1=\frac{1}{2}\sqrt{ \frac{2\pi}{\tilde{R}_{11}}}e^{\frac{1}{2}\tilde{R}_{11}x^2} \biggl(\mbox{erf} \biggl(\frac{1}{2} \sqrt{2\tilde{R}_{11}}x \biggr)-1 \biggr). \end{aligned}$$
(52)

The O(ϵ) terms of Eqs. (46) and (47) are

$$\begin{aligned} &\bar{n}^{R}_2\tilde{R}_{11}x- \frac{d\bar{n}^{R}_2}{dx}=\frac{F^R}{f}x, \end{aligned}$$
(53)
$$\begin{aligned} & \frac{d\bar{n}^{R}_2}{dx}=0 \quad \mbox{at}\ x=0, \end{aligned}$$
(54)

which have the solution \(\bar{n}^{R}_{2}=\frac{F^{R}}{\tilde{R}_{11}f}+C_{2}e^{\frac{1}{2}\tilde{R}_{11}x^{2}}\), where C 2 is a free constant found by matching with the bulk solution. To ensure a non-growing solution, we choose C 2=0, such that \(\bar{n}^{R}_{2}=\frac{F^{R}}{\tilde{R}_{11}f}\). A summary of the boundary layer solution near z=1 is

$$\begin{aligned} n^{R}=&\epsilon^{-1}f \bigl(\epsilon^{\frac{1}{2}} \bar{n}^{R}_1+\epsilon \bar{n}^{R}_2+O \bigl(\epsilon^{\frac{3}{2}}\bigr) \bigr)=f \bigl(\epsilon^{-\frac{1}{2}} \bar{n}^{R}_1+\epsilon^0\bar{n}^{R}_2+O \bigl(\epsilon^{\frac{1}{2}}\bigr) \bigr). \end{aligned}$$
(55)

The boundary layer solution has to match with the bulk solution which is governed by

$$\begin{aligned} {n}^{R} \biggl(\frac{dp^{R}}{dz} \biggr) +\epsilon \frac{dn^{R}}{dz}=-F^Rz+C_4, \end{aligned}$$
(56)

where C 4 is an unknown constant. Similarly we let \(n^{R}=\epsilon^{0} n_{0}^{R}+O(\epsilon^{\frac{1}{2}})\) and find \(n^{R}_{0}=\frac{-F^{R}z+C_{4}}{\frac{dp^{R}}{dz}}\) which is equivalent to the convection-only solution. Matching the bulk with the boundary layer solution we find that \(\bar{n}_{1}\) matches with zero, and \(\bar{n}_{2}\) matches with the bulk solution to give C 4=F R. Following a similar procedure near the stem–root boundary, we find that the boundary layer solution near z=z 2 is

$$\begin{aligned} n_0^R=k_1e^{-\tilde{R}_{20}\mathit{Pe}(z-z_2)}+ \frac{F^R(1-z_2)}{\tilde{R}_{20}}, \end{aligned}$$
(57)

where \(\tilde{R}_{20}=\sqrt{M^{R}} (A_{5}e^{\sqrt{M^{R}}z_{2}}-A_{6}e^{-\sqrt{M^{R}}z_{2}} )\) and k 1 is an unknown constant. Therefore, the composite solution in root is

$$\begin{aligned} n^{R}=& \frac{F^R(1-z)}{\frac{dp^{R}}{dz}} +k_1e^{-\tilde{R}_{20}\mathit{Pe}(z-z_2)} \\ &{}+f\sqrt{\mathit{Pe}}\frac{1}{2}\, \sqrt{\frac{2\pi}{\tilde{R}_{11}}} e^{\frac{1}{2}\tilde{R}_{11}\mathit{Pe}(1-z)^2} \biggl(\mbox{erf} \biggl(\frac{1}{2}\sqrt{2\tilde{R}_{11}\mathit{Pe}}(1-z) \biggr)-1 \biggr) +O\bigl(\epsilon^{\frac{1}{2}}\bigr). \end{aligned}$$
(58)

The constant k 1 will be determined by applying the continuity boundary conditions, but first the solutions in the stem and leaf regions have to be calculated.

3.2 C.2 Stem Zone

Since p S=A 3 z+A 4, the nutrient transport in the stem zone is governed by

$$\begin{aligned} {n}^{S}A_3 +\epsilon\frac{dn^{S}}{dz}=-F^Sz+k_2, \end{aligned}$$
(59)

where k 2 is an unknown constant. We expand \(n^{S}=n^{S}_{0}+O(\epsilon^{\frac{1}{2}})\) and seek boundary layer solutions near z=z 1 and z=z 2 to match with the central bulk region. We find that a boundary layer exists only near z=z 1, such that the composite solution in the stem region is given by

$$\begin{aligned} n^{S}=\frac{-F^Sz+k_2}{A_3} +k_3e^{-A_3\mathit{Pe}(z-z_1)}+O\bigl( \epsilon^{\frac{1}{2}}\bigr), \end{aligned}$$
(60)

where k 3 is also an unknown constant, which, together with k 2, will be determined from the continuity boundary conditions.

3.3 C.3 Leaf Zone

The nutrient transport in the leaf zone is governed by

$$\begin{aligned} {n}^{L} \biggl(\frac{dp^{L}}{dz} \biggr) +\epsilon \frac{dn^{L}}{dz}=-F^Lz+k_4, \end{aligned}$$
(61)

where k 4 is an unknown constant. We expand \(n^{L}=n^{L}_{0}+O(\epsilon^{\frac{1}{2}})\) and seek boundary layer solutions near z=0 and z=z 1 to match with the central bulk region. We find that a boundary layer exists only near z=0 where the boundary condition n=ϕ at z=0 has to be satisfied. We solve for this boundary layer by defining a boundary layer variable y and letting z=ϵ β y, such that

$$\begin{aligned} n^{L} \tilde{L}+\epsilon^{1-\beta}\frac{dn^{L}}{dy}=-F^L \epsilon^{\beta}y+k_4, \end{aligned}$$
(62)

where \(\tilde{L}=\frac{dp^{L}}{dz}\) as a function of ϵ β y, which we expand as follows:

$$\begin{aligned} \tilde{L} =& \sqrt{M^L} \bigl(A_1\cos\bigl( \sqrt{M^L}\epsilon^{\beta}y\bigr)-A_2\sin\bigl( \sqrt{M^L}\epsilon^{\beta}y\bigr) \bigr) \\ =&\sqrt{M^L} \biggl(A_1 \biggl(1-\frac{M^L\epsilon^{2\beta}y^2}{2!}+O \bigl(\epsilon^{4\beta}\bigr) \biggr)-A_2 \bigl( \sqrt{M^L}\epsilon^{\beta}y+O\bigl(\epsilon^{3\beta} \bigr) \bigr) \biggr). \end{aligned}$$
(63)

We rewrite \(\tilde{L}\) as \(\tilde{L}=\tilde{L}_{1}+\epsilon^{\beta}y\tilde{L}_{2}+O(\epsilon^{2\beta})\), whose coefficients are positive and are given by

$$\begin{aligned} \tilde{L}_1=A_1\sqrt{M^L}, \qquad \tilde{L}_2=-A_2 M^L. \end{aligned}$$
(64)

We expand \(n^{L}=\epsilon^{0} n_{0}^{L}+O(\epsilon^{\frac{1}{2}})\) and choose β=1, such that

$$\begin{aligned} &n^{L} \bigl( \tilde{L}_1+\epsilon y \tilde{L}_2+O\bigl(\epsilon^{2}\bigr) \bigr)+ \frac{dn^{L}}{dy}=-F^L\epsilon y+k_4, \end{aligned}$$
(65)
$$\begin{aligned} &n^{L}=\phi\quad\mbox{at}\ y=0. \end{aligned}$$
(66)

The leading order terms of Eqs. (65) and (66) are

$$\begin{aligned} &n^{L}_0\tilde{L}_1+\frac{dn^{L}_0}{dy}=k_4, \end{aligned}$$
(67)
$$\begin{aligned} &n^{L}_0=\phi\quad\mbox{at}\ y=0, \end{aligned}$$
(68)

which have the solution \(n_{0}^{L}=\frac{k_{4}}{\tilde{L}_{1}}+ \bigl(\phi-\frac{k_{4}}{\tilde{L}_{1}}\bigr)e^{-\tilde{L}_{1}y}\), and which match with the bulk solution near y=0. The composite leaf solution is

$$\begin{aligned} n^{L}=\frac{-F^Lz+k_4}{\frac{dp^{L}}{dz}} + \biggl(\phi-\frac{k_4}{\tilde{L}_1}\biggr)e^{-\tilde{L}_1\mathit{Pe}\,z} +O\bigl(\epsilon^{\frac{1}{2}}\bigr). \end{aligned}$$
(69)

3.4 C.4 Applying Continuity Boundary Conditions

The solutions (58), (60), and (69) represent the leading order composite solutions of n in the root, stem and leaf zones, respectively. The unknown constants k 1, k 2, k 3, and k 4 are determined by applying the continuity boundary conditions and retaining only the leading order terms: terms up to, but not including, those at \(O(\epsilon^{\frac{1}{2}})\). At leading order, the continuity of flux condition at z=z 1 reduces to

$$\begin{aligned} &-\tilde{L}_1 \biggl(\phi-\frac{k_4}{\tilde{L}_1} \biggr)e^{-\tilde{L}_1\mathit{Pe}\,z_1}=-A_3k_3. \end{aligned}$$
(70)

Since the terms on the left-hand side are asymptotically zero, this results in k 3=0. Similarly, the continuity of flux condition at z=z 2 at leading order reduces to

$$\begin{aligned} -A_3k_3e^{-A_3\mathit{Pe}(z_2-z_1)} =& -\tilde{R}_{20}k_1-f+ \frac{1}{2}f \sqrt{2\pi\tilde{R}_{11}\mathit{Pe}}(1-z_2)e^{\frac{1}{2}\tilde{R}_{11} \mathit{Pe}(1-z_2)^2} \\ &{}\times \mbox{erfc} \biggl(\frac{1}{2}\sqrt{2\tilde{R}_{11}\mathit{Pe}}(1-z_2)\biggr). \end{aligned}$$
(71)

Since k 3=0, we find that

$$\begin{aligned} k_1=\frac{f}{\tilde{R}_{20}} \biggl(\frac{\sqrt{2\pi\tilde{R}_{11}\mathit{Pe}}}{2}(1-z_2) e^{\frac{1}{2}\tilde{R}_{11}\mathit{Pe}(1-z_2)^2} \mbox{erfc} \biggl(\frac{1}{2}\sqrt{2\tilde{R}_{11}\mathit{Pe}}(1-z_2) \biggr)-1 \biggr). \end{aligned}$$
(72)

Using the asymptotic structure of erfc we find that k 1 is also zero to leading order with a correction at O(1/Pe). Applying continuity of n at z=z 1 and z=z 2, we find that the remaining constants to leading order are

$$\begin{gathered} k_2=F^R(1-z_2)+F^Sz_2+A_3\chi, \qquad k_4=z_1\bigl(F^L-F^S \bigr)+k_2 \end{gathered}$$
(73)

where \(\chi=-\frac{f}{2} \sqrt{\frac{2\pi Pe}{\tilde{R}_{11}}}e^{\frac{1}{2}\tilde{R}_{11}\mathit{Pe}(1-z_{2})^{2}} \mbox{erfc} (\frac{1}{2}\sqrt{2\tilde{R}_{11}\mathit{Pe}}(1-z_{2}) )\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payvandi, S., Daly, K.R., Jones, D.L. et al. A Mathematical Model of Water and Nutrient Transport in Xylem Vessels of a Wheat Plant. Bull Math Biol 76, 566–596 (2014). https://doi.org/10.1007/s11538-013-9932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9932-4

Keywords

Navigation