Skip to main content
Log in

Evolution of Dispersal Toward Fitness

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

It is widely believed that the slowest dispersal strategy is selected in the evolutional if the environment is temporally invariant but spatially heterogeneous. Authors claim in this paper that this belief is true only if random dispersals with constant motility are considered. However, if a dispersal strategy with fitness property is included, the size of the dispersal is not such a crucial factor anymore. Recently, a starvation driven diffusion has been introduced by Cho and Kim (Bull. Math. Biol., 2013), which is a random dispersal strategy with a motility increase on starvation. The authors show that such a dispersal strategy has fitness property and that the evolutional selection favors fitness but not simply slowness. Such a conclusion is obtained from a stability analysis of a competition system between two phenotypes with different dispersal strategies of linear and starvation driven diffusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Averill, I., Lou, Y., & Munther, D. (2012). On several conjectures from evolution of dispersal. Journal of Biological Dynamics, 6, 117–130.

    Article  Google Scholar 

  • Belgacem, F., & Cosner, C. (1995). The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments. Can. Appl. Math. Q., 3(4), 379–397.

    MathSciNet  MATH  Google Scholar 

  • Bezuglyy, A., & Lou, Y. (2010). Reaction–diffusion models with large advection coefficients. Appl. Anal., 89(7), 983–1004.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., & Cosner, C. (2003). Wiley series in mathematical and computational biology. Spatial ecology via reaction–diffusion equations. Chichester: Wiley

    MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2008). Approximating the ideal free distribution via reaction–diffusion–advection equations. J. Differ. Equ., 245, 3687–3703.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2010). Evolution of dispersal and ideal free distribution. Math. Biosci. Eng., 7, 17–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Cho, E., & Kim, Y.-J. (2013). Starvation driven diffusion as a survival strategy of biological organisms. Bull. Math. Biol.

  • Cohen, D., & Levin, S. A. (1991). Dispersal in patchy environments: the effects of temporal and spatial structure. Theor. Popul. Biol., 39(1), 63–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner, C. (2005). A dynamic model for the ideal-free distribution as a partial differential equation. Theor. Popul. Biol., 67, 101–108.

    Article  MATH  Google Scholar 

  • Cosner, C., & Lou, Y. (2003). Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 277(2), 489–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Cosner, C., Dávila, J., & Martínez, S. (2012). Evolutionary stability of ideal free nonlocal dispersal. J. Biol. Dyn., 6, 395–405.

    Article  MathSciNet  Google Scholar 

  • Dieckman, U., O’Hara, B., & Weisser, W. (1999). The evolutionary ecology of dispersal. Trends Ecol. Evol., 14(3), 88–90.

    Article  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., & Pernarowski, M. (1998). The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol., 37(1), 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Fretwell, S. D. (1972). Populations in a seasonal environment. Princeton: Princeton University Press.

    Google Scholar 

  • Fretwell, S. D., & Lucas, H. L. Jr. (1970). On territorial behavior and other factors influencing habitat distribution in birds, I: theoretical development. Acta Biotheor., 19, 16–36.

    Article  Google Scholar 

  • Hambrock, R., & Lou, Y. (2009). The evolution of conditional dispersal strategies in spatially heterogeneous habitats. Bull. Math. Biol., 71(8), 1793–1817.

    Article  MathSciNet  MATH  Google Scholar 

  • Holt, R., & McPeek, M. (1996). Chaotic population dynamics favors the evolution of dispersal. Am. Nat., 148, 709–718.

    Article  Google Scholar 

  • Hsu, S. B., Smith, H. L., & Waltman, P. (1996). Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc., 348(10), 4083–4094.

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson, V., Mischaikow, K., & Poláčik, P. (2001). The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol., 43(6), 501–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, M., & Gaines, M. (1990). Evolution of dispersal: theoretical models and empirical tests using birds and mammels. Annu. Rev. Ecol. Syst., 21, 449–480.

    Article  Google Scholar 

  • Keeling, M. (1999). In J. McGlade (Ed.), Spatial models of interacting populations, advanced ecological theory: principles and applications, Oxford: Blackwell Science.

    Google Scholar 

  • Kim, Y.-J., Kwon, O., & Li, F. (2013). Global asymptotic stability and the ideal free distribution in a starvation driven diffusion. J. Math. Biol. doi:10.1007/s00285-013-0674-6.

    MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y., & Ni, W.-M. (2010). Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Contin. Dyn. Syst., 28(3), 1051–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • McPeek, M., & Holt, R. (1992). The evolution of dispersal in spatially and temporally varying environments. Am. Nat., 140, 1010–1027.

    Article  Google Scholar 

  • Nagylaki, T. (1992). Biomathematics: Vol. 21. Introduction to theoretical population genetics. Berlin: Springer.

    MATH  Google Scholar 

  • Ni, W.-M. (2011). CBMS-NSF regional conference series in applied mathematics: Vol. 82. The mathematics of diffusion. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Interdisciplinary applied mathematics: Vol. 14. Diffusion and ecological problems: modern perspectives (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Tindall, M. J., Porter, S. L., Maini, P. K., Gaglia, G., & Armitage, J. P. (2008). Overview of mathematical approaches used to model bacterial chemotaxis, I: the single cell. Bull. Math. Biol., 70(6), 1525–1569.

    Article  MathSciNet  MATH  Google Scholar 

  • Travis, J. M. J., & Dytham, C. (1999). Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. Lond. B, 266, 723–728.

    Article  Google Scholar 

  • Yoon, C., & Kim, Y.-J. (2013). Bacterial chemotaxis without gradient-sensing. arXiv:1307.6071.

Download references

Acknowledgements

Y.J. Kim was supported by NRF of Korea (No. 2009-0077987) and F. Li was supported by Chinese NSF (No. 11201148), Shanghai Pujiang Program (No. 13PJ1402400), China Postdoctoral Science Foundation (No. 2012M510108) and ECNU Foundation (No. 78210164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsang Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Kwon, O. & Li, F. Evolution of Dispersal Toward Fitness. Bull Math Biol 75, 2474–2498 (2013). https://doi.org/10.1007/s11538-013-9904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9904-8

Keywords

Navigation