Skip to main content
Log in

Modelling a Wolbachia Invasion Using a Slow–Fast Dispersal Reaction–Diffusion Approach

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper uses a reaction–diffusion approach to examine the dynamics in the spread of a Wolbachia infection within a population of mosquitoes in a homogeneous environment. The formulated model builds upon an earlier model by Skalski and Gilliam (Am. Nat. 161(3):441–458, 2003), which incorporates a slow and fast dispersal mode. This generates a faster wavespeed than previous reaction–diffusion approaches, which have been found to produce wavespeeds that are unrealistically slow when compared with direct observations. In addition, the model incorporates cytoplasmic incompatibility between male and female mosquitoes, which creates a strong Allee effect in the dynamics. In previous studies, linearised wavespeeds have been found to be inaccurate when a strong Allee effect is underpinning the dynamics. We provide a means to approximate the wavespeed generated by the model and show that it is in close agreement with numerical simulations. Wavespeeds are approximated for both Aedes aegypti and Drosophila simulans mosquitoes at different temperatures. These wavespeeds indicate that as the temperature decreases within the optimal temperature range for mosquito survival, the speed of a Wolbachia invasion increases for Aedes aegypti populations and decreases for Drosophila simulans populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balasuriya, S. (2010). Invasions with density-dependent ecological parameters. J. Theor. Biol., 266(4), 657–666.

    Article  MathSciNet  Google Scholar 

  • Brelsford, C., & Dobson, S. (2011). Short note: an update on the utility of wolbachia for controlling insect vectors and disease transmission. Asia-Pac. J. Mol. Biol. Biotechnol., 19, 85–92.

    Google Scholar 

  • Coyne, J. A., & Milstead, B. (1987). Long-distance migration of Drosophila. 3. Dispersal of D. melanogaster alleles from a Maryland orchard. Am. Nat., 130(1), 70–82.

    Article  Google Scholar 

  • Coyne, J. A., Boussy, I. A., Prout, T., Bryant, S. H., Jones, J. S., & Moore, J. A. (1982). Long-distance migration of Drosophila. Am. Nat., 119(4), 589–595.

    Article  Google Scholar 

  • Farkas, J. Z., & Hinow, P. (2010). Structured and unstructured continuous models for Wolbachia infections. Bull. Math. Biol., 72(8), 2067–2088.

    Article  MathSciNet  MATH  Google Scholar 

  • Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N., & Skalski, G. T. (2001). Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. Am. Nat., 158(2), 124–135.

    Article  Google Scholar 

  • Hancock, P. A., & Godfray, H. C. (2012). Modelling the spread of Wolbachia in spatially heterogeneous environments. J. R. Soc. Interface, 9(76), 3045–3054.

    Article  Google Scholar 

  • Hancock, P. A., Sinkins, S. P., & Godfray, H. C. J. (2011). Population dynamic models of the spread of Wolbachia. Am. Nat., 177(3), 323–333.

    Article  Google Scholar 

  • Hancock, P. A., Sinkins, S. P., & Godfray, H. C. (2011). Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl. Trop. Dis., 5, e1024.

    Article  Google Scholar 

  • Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B. A., Moore, K., Taylor, C., & Thomson, D. (2005). The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8(1), 91–101.

    Article  Google Scholar 

  • Hoffmann, A. A., Montgomery, B. L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P. H., Muzzi, F., Greenfield, M., Durkan, M., Leong, Y. S., Dong, Y., Cook, H., Axford, J., Callahan, A. G., Kenny, N., Omodei, C., McGraw, E. A., Ryan, P. A., Ritchie, S. A., Turelli, M., & O’Neill, S. L. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476(7361), 454–457.

    Article  Google Scholar 

  • Hosono, Y. (1998). The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol., 60(3), 435–448.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, J. S., Bryant, S. H., Lewontin, R. C., Moore, J. A., & Prout, T. (1981). Gene flow and the geographical distribution of a molecular polymorphism in Drosophila pseudoobscura. Genetics, 98(1), 157–178.

    Google Scholar 

  • Keeling, M. J., Jiggins, F. M., & Read, J. M. (2003). The invasion and coexistence of competing Wolbachia strains. Heredity, 91(4), 382–388.

    Article  Google Scholar 

  • Maidana, N. A., & Yang, H. M. (2008). Describing the geographic spread of dengue disease by traveling waves. Math. Biosci., 215(1), 64–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Mcmeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W., Sidhu, M., Wang, Y. F., & O’Neill, S. L. (2009). Stable introduction of a life-shortening wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910), 141–144.

    Article  Google Scholar 

  • Murray, J. D., Stanley, E. A., & Brown, D. L. (1986). On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. B, Biol. Sci., 229(1255), 111–150.

    Article  Google Scholar 

  • Ndii, M. Z., Hickson, R. I., & Mercer, G. N. (2012). Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission. ANZIAM J., 53, 213–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Price, C. S., Kim, C. H., Gronlund, C. J., & Coyne, J. A. (2001). Cryptic reproductive isolation in the Drosophila simulans species complex. Evolution, 55(1), 81–92.

    Google Scholar 

  • Schofield, P. (2002). Spatially explicit models of Turelli–Hoffmann wolbachia invasive wave fronts. J. Theor. Biol., 215(1), 121–131.

    Article  MathSciNet  Google Scholar 

  • Shigesada, N., & Kawasaki, K. (1997). Biological invasions: theory and practice. London: Oxford University Press.

    Google Scholar 

  • Siddiqui, W. H., & Barlow, C. A. (1972). Population growth of drosophila melanogaster (diptera: Drosophilidae) at constant and alternating temperatures. Ann. Entomol. Soc. Am., 65(5), 993–1001.

    Google Scholar 

  • Skalski, G. T., & Gilliam, J. F. (2003). A diffusion-based theory of organism dispersal in heterogeneous populations. Am. Nat., 161(3), 441–458.

    Article  Google Scholar 

  • Turelli, M. (1994). Evolution of incompatibility-inducing microbes and their hosts. Evolution, 48(5), 1500–1513.

    Article  Google Scholar 

  • Turelli, M. (2010). Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1), 232–241.

    Article  Google Scholar 

  • Turelli, M., & Hoffmann, A. A. (1991). Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 353(6343), 440–442.

    Article  Google Scholar 

  • Walker, T., Johnson, P. H., Moreira, L. A., Iturbe-Ormaetxe, I., Frentiu, F. D., McMeniman, C. J., Leong, Y. S., Dong, Y., Axford, J., Kriesner, P., Lloyd, A. L., Ritchie, S. A., O’Neill, S. L., & Hoffmann, A. A. (2011). The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361), 450–453.

    Article  Google Scholar 

  • Wang, M. H., & Kot, M. (2001). Speeds of invasion in a model with strong or weak Allee effects. Math. Biosci., 171(1), 83–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson, D. S., Clark, A. B., Coleman, K., & Dearstyne, T. (1994). Shyness and boldness in humans and other animals. Trends Ecol. Evol., 9(11), 442–446.

    Article  Google Scholar 

  • Wolf, M., Van Doorn, G. S., Leimar, O., & Weissing, F. J. (2007). Life-history trade-offs favour the evolution of animal personalities. Nature, 447(7144), 581–584.

    Article  Google Scholar 

  • Yang, H. M., Macoris, M. L. G., Galvani, K. C., Andrighetti, M. T. M., & Wanderley, D. M. V. (2009). Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect., 137, 1188–1202.

    Article  Google Scholar 

Download references

Acknowledgements

The work of MHTC was supported by the Australian Postgraduate Award. PSK was supported by the ARC Discovery Early Career Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew H. T. Chan.

Appendix

Appendix

In (16) and (17), (n,m) can be found by solving ϕ 1=0 and ϕ 2=0 simultaneously, where

(26)
(27)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, M.H.T., Kim, P.S. Modelling a Wolbachia Invasion Using a Slow–Fast Dispersal Reaction–Diffusion Approach. Bull Math Biol 75, 1501–1523 (2013). https://doi.org/10.1007/s11538-013-9857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9857-y

Keywords

Navigation