Skip to main content
Log in

Law of the Minimum Paradoxes

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The “Law of the Minimum” states that growth is controlled by the scarcest resource (limiting factor). This concept was originally applied to plant or crop growth (Justus von Liebig, 1840, Salisbury, Plant physiology, 4th edn., Wadsworth, Belmont, 1992) and quantitatively supported by many experiments. Some generalizations based on more complicated “dose-response” curves were proposed. Violations of this law in natural and experimental ecosystems were also reported. We study models of adaptation in ensembles of similar organisms under load of environmental factors and prove that violation of Liebig’s law follows from adaptation effects. If the fitness of an organism in a fixed environment satisfies the Law of the Minimum then adaptation equalizes the pressure of essential factors and, therefore, acts against the Liebig’s law. This is the the Law of the Minimum paradox: if for a randomly chosen pair “organism–environment” the Law of the Minimum typically holds, then in a well-adapted system, we have to expect violations of this law.

For the opposite interaction of factors (a synergistic system of factors which amplify each other), adaptation leads from factor equivalence to limitations by a smaller number of factors.

For analysis of adaptation, we develop a system of models based on Selye’s idea of the universal adaptation resource (adaptation energy). These models predict that under the load of an environmental factor a population separates into two groups (phases): a less correlated, well adapted group and a highly correlated group with a larger variance of attributes, which experiences problems with adaptation. Some empirical data are presented and evidences of interdisciplinary applications to econometrics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumont, O., Maier-Reimer, E., Blain, S., & Monfray, P. (2003). An ecosystem model of the global ocean including Fe, Si, P colimitations. Glob. Biogeochem. Cycles, 17(2), 1060. doi:10.1029/2001GB001745.

    Article  Google Scholar 

  • Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model., 200(1–2), 1–19.

    Article  Google Scholar 

  • Ballantyne, F. IV, Menge, D. N. L., Ostling, A., & Hosseini, P. (2008). Nutrient recycling affects autotroph and ecosystem stoichiometry. Am. Nat., 171(4), 511–523.

    Article  Google Scholar 

  • Bloom, A. J., Chapin, F. S. III, & Mooney, H. A. (1985). Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst., 16, 363–392.

    Google Scholar 

  • Bomze, I. M. (2002). Regularity vs. degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev., 44, 394–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Breznitz, S. (Ed.) (1983). The denial of stress. New York: International Universities Press.

    Google Scholar 

  • Brown, G. C., & Cooper, C. E. (1993). Control analysis applied to a single enzymes: can an isolated enzyme have a unique rate–limiting step? Biochem. J., 294, 87–94.

    Google Scholar 

  • Bulygin, G. V., Mansurov, A. S., Mansurova, T. P., & Smirnova, E. V. (1992a). Dynamics of parameters of human metabolic system during the short-term adaptation. Institute of Biophysics, Russian Academy of Sciences, Preprint 180B, Krasnoyarsk.

  • Bulygin, G. V., Mansurov, A. S., Mansurova, T. P., Mashanov, A. A., & Smirnova, E. V. (1992b). Impact of health on the ecological stress dynamics. Institute of Biophysics, Russian Academy of Sciences, Preprint 185B, Krasnoyarsk.

  • Cade, B. S., Terrell, J. W., & Schroeder, R. L. (1999). Estimating effects of limiting factors with regression quantiles. Ecology, 80(1), 311–323.

    Article  Google Scholar 

  • Campbell, J. Y., Lo, A.-W., & MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Chapin, F. S. III, Schulze, E., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst., 21, 423–447.

    Article  Google Scholar 

  • Chauvet, G. A. (1999). S-propagators: a formalism for the hierarchical organization of physiological systems. Application to the nervous and the respiratory systems. Int. J. Gen. Syst., 28(1), 53–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Chertov, O., Gorbushina, A., & Deventer, B. (2004). A model for microcolonial fungi growth on rock surfaces. Ecol. Model., 177(3–4), 415–426.

    Article  Google Scholar 

  • Colborn, T., Dumanoski, D., & Meyers, J. P. (1996). Our stolen future: are we threatening our fertility, intelligence, and survival?—A scientific detective story. Dutton: Peguin Books.

    Google Scholar 

  • Crampin, E. J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., & Tawhai, M. (2004). Computational physiology and the physiome project. Exp. Physiol., 89, 1–26.

    Article  Google Scholar 

  • Daly, H. E. (1991). Population and economics—a bioeconomic analysis. Popul. Environ., 12(3), 257–263.

    Article  Google Scholar 

  • Danger, M., Daufresne, T., Lucas, F., Pissard, S., & Lacroix, G. (2008). Does Liebig’s law of the minimum scale up from species to communities? Oikos, 117(11), 1741–1751.

    Article  Google Scholar 

  • Droop, M. R. (1973). Some thoughts on nutrient limitation in algae. J. Phycol., 9, 264–272.

    Google Scholar 

  • Drożdż, S., Grümmer, F., Górski, A. Z., Ruf, F., & Speth, J. (2000). Dynamics of competition between collectivity and noise in the stock market. Physica A, 287, 440–449.

    Article  Google Scholar 

  • Egli, T., & Zinn, M. (2003). The concept of multiple-nutrient-limited growth of microorganisms and its application in biotechnological processes. Biotechnol. Adv., 22(1–2), 35–43.

    Article  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. B, 365(1540), 547–556.

    Article  Google Scholar 

  • Gause, G. F. (1934). The struggle for existence. Baltimore: Williams and Wilkins. Online: http://www.ggause.com/Contgau.htm.

    Google Scholar 

  • Goldstone, B. (1952). The general practitioner and the general adaptation syndrome. S. Afr. Med. J., 26, 88–92, 106–109. PMID: 14901129, 14913266.

    Google Scholar 

  • Gorban, A. N. (1984). Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Novosibirsk: Nauka.

    Google Scholar 

  • Gorban, A. N. (2004). Singularities of transition processes in dynamical systems: qualitative theory of critical delays. Electron. J. Diff. Eqns. Monograph (Vol. 05). E-print: arXiv:chao-dyn/9703010.

    MATH  Google Scholar 

  • Gorban, A. N. (2007). Selection theorem for systems with inheritance. Math. Model. Nat. Phenom., 2(4), 1–45. E-print: arXiv:cond-mat/0405451 [cond-mat.stat-mech].

    Article  MathSciNet  Google Scholar 

  • Gorban, A. N., & Radulescu, O. (2008). Dynamic and static limitation in multiscale reaction networks, revisited. Adv. Chem. Eng., 34, 103–173.

    Article  Google Scholar 

  • Gorban, A. N., & Zinovyev, A. Y. (2009). Principal graphs and manifolds. In E. S. Olivas et al. (Eds.), Handbook of research on machine learning applications and trends: algorithms, methods, and techniques (pp. 28–59). Hershey: IGI Global. E-print: arXiv:0809.0490 [cs.LG].

    Chapter  Google Scholar 

  • Gorban, A. N., Manchuk, V. T., & Petushkova (Smirnova), E. V. (1987). Dynamics of physiological paramethers correlations and the ecological-evolutionary principle of polyfactoriality. In Problemy Ekologicheskogo Monitoringa i Modelirovaniya Ekosistem [The Problems of Ecological Monitoring and Ecosystem Modelling] (pp. 187–198). Leningrad: Gidrometeoizdat.

    Google Scholar 

  • Gorban, A. N., Kegl, B., Wunsch, D., & Zinovyev, A. (2008). Principal manifolds for data visualisation and dimension reduction. Lecture notes in computational science and engineering (Vol. 58). Berlin–Heidelberg–New York: Springer.

    Book  Google Scholar 

  • Gorban, A. N., Smirnova, E. V., & Tyukina, T. A. (2009). Correlations, risk and crisis: from physiology to finance. E-print: arXiv:0905.0129 [physics.bio-ph].

  • Gorban, A. N., Radulescu, O., & Zinovyev, A. Y. (2010). Asymptotology of chemical reaction networks. Chem. Eng. Sci., 65, 2310–2324.

    Article  Google Scholar 

  • Greene, E. (1999). Phenotypic variation in larval development and evolution: polymorphism, polyphenism, and developmental reaction norms. In M. Wake & B. Hall (Eds.), The origin and evolution of larval forms (pp. 379–410). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Haldane, J. B. S. (1932). The causes of evolution. London: Longmans Green.

    Google Scholar 

  • Hennessy, D. A. (2009). Crop yield skewness under law of the minimum technology. Am. J. Agric. Econ., 91(1), 197–208.

    Article  MathSciNet  Google Scholar 

  • Hoffman, R. J. (1978). Environmental uncertainty and evolution of physiological adaptation in colias butterflies. Am. Nat., 112(988), 999–1015.

    Article  Google Scholar 

  • Hutchinson, G. E. (1961). The paradox of the plankton. Am. Nat., 95, 137–145.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis, series. Springer series in statistics (Vol. 2). New York: Springer.

    Google Scholar 

  • Karmanova, I. V., Razzhevaikin, V. N., & Shpitonkov, M. I. (1996). Application of correlation adaptometry for estimating a response of herbaceous species to stress loadings. Dokl. Botanic. Sci., 346–348, 4–7. Translated from Dokl. Akad. Nauk SSSR, 346, 1996.

    Google Scholar 

  • Kingsolver, J. G., & Pfennig, D. W. (2007). Patterns and power of phenotypic selection in nature. BioScience, 57(7), 561–572.

    Article  Google Scholar 

  • Kleene, S. C. (1956). Representation of events in nerve sets and finite automata. In J. McCarthy & C. Shannon (Eds.), Automata studies (pp. 3–40). Princeton: Princeton University Press.

    Google Scholar 

  • Kobe, R. K. (1996). Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr., 66(2), 181–201.

    Article  Google Scholar 

  • Kolokoltsov, V., & Maslov, V. (1997). Idempotent analysis and applications. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  • Legović, T., & Cruzado, A. (1997). A model of phytoplankton growth on multiple nutrients based on the Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law. Ecol. Model., 99(1), 19–31.

    Article  Google Scholar 

  • Lerner, H. R. (Ed.) (1999). Plant responses to environmental stresses: from phytohormones to genome reorganization. New York: Dekker.

    Google Scholar 

  • Litvinov, G. L. (2007). The Maslov dequantization idempotent and tropical mathematics: a brief introduction. J. Math. Sci., 140(3), 426–444. arXiv:math/0507014 [math.GM].

    Article  MathSciNet  Google Scholar 

  • Litvinov, G. L., & Maslov, V. P. (Eds.) (2005). Idempotent mathematics and mathematical physics. Contemporary mathematics (Vol. 377). Providence: AMS.

    MATH  Google Scholar 

  • Mansurov, A. S., Mansurova, T. P., Smirnova, E. V., Mikitin, L. S., & Pershin, A. V. (1994). How do correlations between physiological parameters depend on the influence of different systems of stress factors. In R. G. Khlebopros (Ed.), Global & regional ecological problems (pp. 499–516). Krasnoyarsk: Krasnoyarsk State Technical University Publ.

    Google Scholar 

  • Mansurov, A. S., Mansurova, T. P., Smirnova, E. V., Mikitin, L. S., & Pershin, A. V. (1995). Human adaptation under influence of synergic system of factors (treatment of oncological patients after operation). Institute of Biophysics, Russian Academy of Sciences, Preprint 212B, Krasnoyarsk.

  • Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Ann. Biomed. Eng., 25(2), 239–251.

    Article  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems. New York: Wiley.

    Google Scholar 

  • Maynard-Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    Google Scholar 

  • McCarty, R., & Pasak, K. (2000). Alarm phase and general adaptation syndrome. In G. Fink (Ed.), Encyclopedia of stress (Vol. 1, pp. 126–130). San Diego: Academic Press.

    Google Scholar 

  • McGill, B. (2005). A mechanistic model of a mutualism and its ecological and evolutionary dynamics. Ecol. Model., 187(4), 413–425.

    Article  Google Scholar 

  • Menge, D. N. L., & Weitz, J. S. (2009). Dangerous nutrients: Evolution of phytoplankton resource uptake subject to virus attack. J. Theor. Biol., 257(1), 104–115.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define fitness for general ecological scenarios. Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Milo, R., Hou, J. H., Springer, M., Brenner, M. P., & Kirschner, M. W. (2007). The relationship between evolutionary and physiological variation in hemoglobin. PNAS USA, 104(43), 16998–17003.

    Article  Google Scholar 

  • Nijland, G. O., Schouls, J., & Goudriaan, J. (2008). Integrating the production functions of Liebig Michaelis-Menten, Mitscherlich and Liebscher into one system dynamics model. NJAS—Wageningen J. Life Sci., 55(2), 199–224.

    Google Scholar 

  • Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Philadelphia–London–Toronto: Saunders.

    Google Scholar 

  • Oechssler, J., & Riedel, F. (2002). On the dynamic foundation of evolutionary stability in continuous models. J. Econ. Theory, 107, 223–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Ozden, M. Y. (2004). Law of the minimum in learning. Educ. Technol. Soc., 7(3), 5–8.

    Google Scholar 

  • Paris, Q. (1992). The return of von Liebig’s “Law of the Minimum”. Agron. J., 84, 1040–1046.

    Article  Google Scholar 

  • Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., & Stanley, H. E. (2002). Random matrix approach to cross correlations in financial data. Phys. Rev. E, 65, 066126.

    Article  Google Scholar 

  • Ponomarenko, L. D., & Smirnova, E. V. (1998). Dynamical characteristics of blood system in mice with phenilhydrazin anemiya. In Proceeding of 9th international symposium “Reconstruction of homeostasis” (Vol. 1, pp. 42–45), March 15–20, Krasnoyarsk, Russia.

    Google Scholar 

  • Rockafellar, R. T. (1997). Convex analysis. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Saito, M. A., & Goepfert, T. J. (2008). Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnol. Oceanogr., 53(1), 276–290.

    Article  Google Scholar 

  • Salisbury, F. (1992). Plant physiology (4th ed.). Belmont: Wadsworth.

    Google Scholar 

  • Schkade, J. K., & Schultz, S. (2003). Occupational adaptation in perspectives. In P. Kramer, J. Hinojosa & C. B. Royeen (Eds.), Perspectives in human occupation participation in life (pp. 181–221). Baltimore: Lippincott Williams & Wilkins. Chap. 7.

    Google Scholar 

  • Sedov, K. R., Gorban’, A. N., Petushkova (Smirnova), E. V., Manchuk, V. T., & Shalamova, E. N., (1988). Correlation adaptometry as a method of screening of the population. Vestn. Akad. Med. Nauk SSSR, 10, 69–75. PMID: 3223045.

    Google Scholar 

  • Selye, H. (1938a). Adaptation energy. Nature, 141(3577), 926.

    Article  Google Scholar 

  • Selye, H. (1938b). Experimental evidence supporting the conception of “adaptation energy”. Am. J. Physiol., 123, 758–765.

    Google Scholar 

  • Semevsky, F. N., & Semenov, S. M. (1982). Mathematical modeling of ecological processes. Leningrad: Gidrometeoizdat.

    Google Scholar 

  • Shaw, R. G., Geyer, C. J., Wagenius, S., Hangelbroek, H. H., & Etterson, J. R. (2008). Unifying life-history analyses for inference of fitness and population growth. Am. Nat., 172, E35–E47.

    Article  Google Scholar 

  • Shoresh, N., Hegreness, M., & Kishony, R. (2008). Evolution exacerbates the paradox of the plankton. PNAS USA, 105(34), 12365–12369.

    Article  Google Scholar 

  • Shumeiko, P. G., Osipov, V. I., & Kofman, G. B. (1994). Early detection of industrial emission impact on Scots Pine needles by composition of phenolic compounds. In R. G. Khlebopros (Ed.), Global & regional ecological problems (pp. 536–543). Krasnoyarsk: Krasnoyarsk State Technical University Publ.

    Google Scholar 

  • Sih, A., & Gleeson, S. K. (1995). A limits-oriented approach to evolutionary ecology. Trends Ecol. Evol., 10(9), 378–382.

    Article  Google Scholar 

  • Strygina, S. O., Dement’ev, S. N., Uskov, V. M., & Chernyshova, G. I. (2000). Dynamics of the system of correlations between physiological parameters in patients after myocardial infarction. In Mathematics computer, education. Proceedings of conference (Vol. 7, pp. 685–689), Moscow.

    Google Scholar 

  • Sudakov, K. V. (2004). Functional systems theory: a new approach to the question of the integration of physiological processes in the body. Neurosci. Behav. Physiol., 34(5), 495–500.

    Article  MathSciNet  Google Scholar 

  • Svetlichnaia, G. N., Smirnova, E. V., & Pokidysheva, L. I. (1997). Correlational adaptometry as a method for evaluating cardiovascular and respiratory interaction. Fiziol. Chelov., 23(3), 58–62. PMID: 9264951.

    Google Scholar 

  • Thomson, J. D., Weiblen, G., Thomson, B. A., Alfaro, S., & Legendre, P. (1996). Untangling multiple factors in spatial distributions: lilies, gophers and rocks. Ecology, 77, 1698–1715.

    Article  Google Scholar 

  • Tilman, D. (1980). Resources: a graphical-mechanistic approach to competition and predation. Am. Nat., 116(3), 362–393.

    Article  Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.

    Google Scholar 

  • van den Berg, H. A. (1998). Multiple nutrient limitation in unicellulars: reconstructing Liebig’s law. Math. Biosci., 149(1), 1–22.

    Article  MATH  Google Scholar 

  • van der Ploeg, R. R., Böhm, W., & Kirkham, M. B. (1999). On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J., 63, 1055–1062.

    Article  Google Scholar 

  • Waxman, D., & Welch, J. J. (2005). Fisher’s microscope and Haldane’s ellipse. Am. Nat., 166, 447–457.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Wutzler, T., & Reichstein, M. (2008). Colimitation of decomposition by substrate and decomposers—a comparison of model formulations. Biogeosci. Discuss., 5, 163–190.

    Article  Google Scholar 

  • Zinn, M., Witholt, B., & Egli, T. (2004). Dual nutrient limited growth: models experimental observations, and applications. J. Biotechnol., 113(1–3), 263–279.

    Article  Google Scholar 

  • Zuckerkandl, E., & Villet, R. (1988). Concentration-affinity equivalence in gene regulation: convergence of genetic and environmental effects. PNAS USA, 85, 4784–4788.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Gorban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorban, A.N., Pokidysheva, L.I., Smirnova, E.V. et al. Law of the Minimum Paradoxes. Bull Math Biol 73, 2013–2044 (2011). https://doi.org/10.1007/s11538-010-9597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9597-1

Keywords

Navigation