Skip to main content
Log in

A Multicompartment Liver-based Pharmacokinetic Model for Benzene and its Metabolites in Mice

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Benzene is a highly flammable, colorless liquid. Ubiquitous exposures result from its presence in gasoline vapors, cigarette smoke, and industrial processes. After uptake into the body, benzene undergoes a series of metabolic transformations to multiple metabolites that exert toxic effects on the bone marrow. We developed a physiologically based pharmacokinetic model for the uptake and elimination of benzene in mice to relate the concentration of inhaled and orally administered benzene to the tissue doses of benzene and its key metabolites. This model takes into account the zonal distribution of enzymes and metabolism in the liver rather than treating the liver as one homogeneous compartment, and considers metabolism in tissues other than the liver. Analysis was done to examine the existence and uniqueness of solutions of the system. We then formulated an inverse problem to obtain estimates for the unknown parameters; data from multiple laboratories and experiments were used. Despite the sources of variability, the model simulations matched the data reasonably well in most cases. Our study shows that the multicompartment metabolism model does improve predictions over the previous model (Cole et al. in J. Toxicol. Environ. Health, 439–465, 2001) and that in vitro metabolic constants can be successfully extrapolated to predict in vivo data for benzene metabolism and dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, M.E., Eklund, C.R., Mills, J.J., Barton, H.A., Birnbaum, L.S., 1997. A multicompartment geometric model of the liver in relation to regional induction of cytochrome P450s. Toxicol. Appl. Pharmacol. 144, 135–144.

    Article  Google Scholar 

  • Andrews, L.S., Sasame, H.A., Gilletter, J.R., 1979. 3H-Benzene metabolism in rabbit bone marrow. Life Sci. 25, 567–572.

    Article  Google Scholar 

  • Arms, A.D., Travis, C.C., 1998. Reference physiological parameters in pharmacokinetic modeling. Technical report, Office of Risk Analysis, Oak Ridge National Laboratory.

  • Banks, H.T., Kunisch, K., 1989. Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Basel.

    MATH  Google Scholar 

  • Banks, H.T., Cole, C.E., Schlosser, P.M., Tran, H.T., 2004. Modeling and optimal regulation of erythropoiesis subject to benzene intoxication. Math. Biosci. Eng. 1(1), 15–48.

    MATH  MathSciNet  Google Scholar 

  • Bergman, K., 1979. Whole-body autoradiography and allied tracer techniques in distribution and elimination studies of some organic solvents: benzene, toluene, xylene, styrene, methylene chloride, chloroform, carbon tetrachloride and trichloroethylene. Scand. J. Work Environ. Health 5(Suppl. 1), 1–263.

    Google Scholar 

  • Chaney, A.M., Carlson, G.P., 1995. Comparison of rat hepatic and pulmonary microsomal metabolism of benzene and the lack of benzene-induced pneumotoxicity and hepatotoxicity. Toxicology 104, 53–62.

    Article  Google Scholar 

  • Cole, C.E., Tran, H.T., Schlosser, P.M., 2001. Physiologically based pharmacokinetic modeling of benzene metabolism in mice through extrapolation from in vitro to in vivo. J. Toxicol. Environ. Health, 439–465.

  • de Waziers, I., Cugnenc, P.H., Lang, C.S., Leroux, J.-P., Beaune, P.H., 1990. Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmacol. Exp. Ther. 253, 387–394.

    Google Scholar 

  • Eastmond, D.A., Smith, M.T., Ruzo, L.O., Ross, D., 1986. Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase. Mol. Pharmacol. 30, 674–679.

    Google Scholar 

  • el Mouelhi, M., Kauffman, F.C., 1986. Sublobular distribution of transferases and hydrolases associated with glucuronide, sulfate and glutathione conjugation in human liver. Hepatology 6, 450–456.

    Article  Google Scholar 

  • Gebhardt, R., 1992. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53, 275–354.

    Article  Google Scholar 

  • Greenlee, W.F., Gross, E.A., Irons, R.D., 1981a. Relationship between benzene toxicity and the disposition of 14 C-labelled benzene metabolites in the rat. Chem. Biol. Interact. 33, 285–299.

    Article  Google Scholar 

  • Greenlee, W.F., Sun, J.D., Bus, J.S., 1981b. A proposed mechanism of benzene toxicity: Formation of reactive intermediates from polyphenol metabolites. Toxicol. Appl. Pharmacol. 59, 187–195.

    Article  Google Scholar 

  • Gut, I., Nedelcheva, V., Soucek, P., Stopka, P., Tichavská, B., 1996. Cytochromes p450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ. Health Perspect. 104(Suppl. 6), 1211.

    Article  Google Scholar 

  • Henderson, A.P., Barnes, M.L., Bleasdale, C., Cameron, R., Clegg, W., Heath, S.L., Lindstrom, A.B., Rappaport, S.M., Waidyanatha, S., Watson, W.P., Golding, B.T., 2005. Reactions of benzene oxide with thiols including glutathione. Chem. Res. Toxicol. 18, 265–270.

    Article  Google Scholar 

  • Hoffmann, M.J., Ji, S., Hedli, C.C., Snyder, R., 1999. Metabolism of [14C]phenol in the isolated perfused mouse liver. Toxicol. Sci. 49, 40–47.

    Article  Google Scholar 

  • ILSI, 1994. Physiological Parameter Values for PBPK Models. International Life Sciences Institute, Risk Sciences Institute.

  • Ingelman-Sundberg, M., Johansson, I., Penttilä, K.E., Glaumann, H., Lindros, K.O., 1988. Centrilobular expression of ethanol-inducible cytochrome P-450 (iie1) in rat liver. Biochem. Biophys. Res. Commun. 157, 55–60.

    Article  Google Scholar 

  • Kalf, G., 1987. Recent advances in the metabolism and toxicity of benzene. CRC Crit. Rev. Toxicol. 18, 141–159.

    Article  Google Scholar 

  • Kedderis, G.L., Teo, S.K., Batra, R., Held, S.D., Gargas, M.L., 1996. Refinement and verification of the physiologically based dosimetry description for acrylonitrile in rats. Toxicol. Appl. Pharmacol. 140, 422–435.

    Article  Google Scholar 

  • Kelley, C.T., 1999. Iterative Methods for Optimization. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Kenyon, E.M., Seeley, M.E., Janszen, D., Medinsky, M.A., 1995. Dose-, route-, and sex-dependent urinary excretion of phenol metabolites of B6C3F1 mice. J. Toxicol. Environ. Health 44, 219–233.

    Article  Google Scholar 

  • Koop, D.R., Laethem, C.L., Schnier, G.G., 1989. Identification of ethanol-inducible P450 isozyme 3a (P450IIE1) as a benzene and phenol hydroxylase. Toxicol. Appl. Pharmacol. 98, 278–288.

    Article  Google Scholar 

  • Lamers, W.H., Hilberts, A., Furt, E., Smith, J., Jonges, G.N., van Noorden, C.J.F., Janzen, J.W.G., Charles, R., Moorman, A., 1989. Hepatic enzymic zonation: A reevaluation of the concept of the liver acinus. Hepatology 10(1), 72–76.

    Article  Google Scholar 

  • Lee, C.-Y.G., 1984. Multiple forms of mouse glutathione s-transferase. Biochem. Soc. Trans. 12, 30–33.

    Google Scholar 

  • Legathe, A., Hoener, B.-A., Tozer, T.N., 1994. Pharmacokinetic interaction between benzene metabolites, phenol and hydroquinone, in B6C3F1 mice. Toxicol. Appl. Pharmacol. 124, 131–138.

    Article  Google Scholar 

  • Leung, H.-W., Poland, A., Paustenbach, D.J., Jay Murray, F., Andersen, M.E., 1990. Pharmacokinetics of [125I]-2-Iodo-3,7,8-trichlorobenzo-p-dioxin in mice: Analysis with a physiological modeling approach. Toxicol. Appl. Pharmacol. 103, 411–419.

    Article  Google Scholar 

  • Lindstrom, A.B., Yeowell-O’Connell, K., Waidyanatha, S., Golding, B.T., Tornero-Velez, R., Rappaport, S.M., 1997. Measurement of benzene oxide in the blood of rats following administration of benzene. Carcinogenesis 18, 1637–1641.

    Article  Google Scholar 

  • Lipscomb, J.C., Teuschler, L.K., Swartout, J., Popken, D., Cox, T., Kedderis, G.L., 2003. The impact of cytochrome P450 2E1-dependent metabolic variance on a risk-relevant pharmacokinetic outcome in humans. Risk Anal. 23, 1221–1238.

    Article  Google Scholar 

  • Lovern, M.R., Maris, M.E., Schlosser, P.M., 1999. Use of a mathematical model of rodent in vitro benzene metabolism to predict human in vitro metabolism data. Carcinogenesis 20, 1511–1520.

    Article  Google Scholar 

  • MacEachern, L., Snyder, R., Laskin, D., 1992. Alterations in the morphology and functional activity of bone marrow phagocytes following benzene treatment in mice. Toxicol. Appl. Pharmacol. 117, 147–154.

    Article  Google Scholar 

  • Mainwaring, G.M., Williams, S.M., Foster, J.R., Tugwood, J., Green, T., 1996. The distribution of theta-class glutathione s-transferases in the liver and lung of mouse, rat and human. Biochem. J. 318, 297–303.

    Google Scholar 

  • Maltoni, C., Conti, B., Cotti, G., 1983. Benzene: A multipotential carcinogen. Results of long-term bioassays performed at the Bologna institute of oncology. Am. J. Ind. Med. 4, 589–630.

    Article  Google Scholar 

  • Maltoni, C., Conti, B., Cotti, G., Belpoggi, F., 1985. Experimental studies on benzene carcinogenicity at the Bologna institute of oncology: Current results and ongoing research. Am. J. Ind. Med. 7, 415–446.

    Article  Google Scholar 

  • Mathews, J.M., Etheridge, A.S., Matthews, H.B., 1998. Dose-dependent metabolism of benzene in hamsters, rats, and mice. Toxicol. Sci. 44, 14–21.

    Google Scholar 

  • Medinsky, M.A., Kenyon, E., Seaton, M.J., Schlosser, P.M., 1996. Mechanistic considerations in benzene physiological model development. Environ. Health Perspect. 104(Supplement 6), 1399–1404.

    Article  Google Scholar 

  • Medinsky, M.A., Sabourin, P.J., Lucier, G., Birnbaum, L.S., Henderson, R.F., 1989. A physiological model for simulation of benzene metabolism in rats and mice. Toxicol. Appl. Pharmacol. 99, 193–206.

    Article  Google Scholar 

  • Medinsky, M.A., Leavens, T.L., Csanady, G.A., Gargas, M.L., Bond, J.A., 1994. In vivo metabolism of butadiene by mice and rats: A comparison of physiological model predictions and experimental data. Carcinogenesis 15, 1329–1340.

    Article  Google Scholar 

  • Medinsky, M.A., Kenyon, E.M., Schlosser, P.M., 1995. Benzene: A case study in parent chemical and metabolite interactions. Toxicology 105, 225–233.

    Article  Google Scholar 

  • Nedelcheva, V., Gut, I., Soucek, P., Tichavska, B., Tynkova, L., Mraz, J., Guengerich, F.P., Indelman-Sundberg, M., 1999. Metabolism of benzene in human liver microsomes: Individual variations in relation to CYP2E1 expression. Arch. Toxicol. 73, 33–40.

    Article  Google Scholar 

  • Parke, D.V., Williams, R.T., 1953. Studies in detoxification: 49. The metabolism of benzene containing [14C1] benzene. J. Biochem. 54, 231–238.

    Google Scholar 

  • Parkinson, A., 1996. Biotransformation of xenobiotics. In: Klaassen, C.D. (Ed.), Casarett and Doull’s Toxicology: The Basic Science of Poisons, 5th edn., pp. 113–186. McGraw-Hill, Inc., New York.

    Google Scholar 

  • Poulin, P., Krishnan, K., 1995a. An algorithm for predicting tissue:blood partition coefficients of organic chemicals from n-octanol:water partition coefficient data. J. Toxicol. Environ. Health 46, 117–129.

    Article  Google Scholar 

  • Poulin, P., Krishnan, K., 1995b. A biologically-based algorithm for predicting human tissue:blood partition coefficients of organic chemicals. Human Exp. Toxicol. 14, 273–280.

    Article  Google Scholar 

  • Robinson, C., 1995. Dynamical Systems: Stability, Dynamics, and Chaos. CRC Press, Inc., Boca Raton.

    Google Scholar 

  • Sabourin, P.J., Chen, B.T., Lucier, G., Birnbaum, L.S., Fisher, E., Henderson, R.F., 1987. Effect of dose on the absorption and excretion of [14C] benzene administered orally or by inhalation in rats and mice. Toxicol. Appl. Pharmacol. 87, 325–336.

    Article  Google Scholar 

  • Sabourin, P.J., Bechtold, W.E., Birnbaum, L.S., Lucier, G., Henderson, R.F., 1988. Differences in the metabolism and disposition of inhaled [3H] benzene by F344/N rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 94, 128–140.

    Article  Google Scholar 

  • Sabourin, P.J., Bechtold, W.E., Griffith, W.C., Birnbaum, L.S., Lucier, G., Henderson, R.F., 1989. Effect of exposure concentration, exposure rate, and route of administration on metabolism of benzene by F344 rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 99, 421–444.

    Article  Google Scholar 

  • Schlosser, P.M., Bond, J.A., Medinsky, M.A., 1993. Benzene and phenol metabolism by mouse and rat liver microsomes. Carcinogenesis 14, 2477–2486.

    Article  Google Scholar 

  • Seaton, M.J., Schlosser, P.M., Medinsky, M.A., 1995. In vitro conjugation of benzene metabolites by human liver: Potential influence of interindividual variability on benzene toxicity. Carcinogenesis 16, 1519–1527.

    Article  Google Scholar 

  • Steiner, E.C., Rey, T.D., McCroskey, P.S., 1990. Simusolv Reference Guide. Dow Chemical Company, Midland.

    Google Scholar 

  • Tsutsumi, M., Lasker, J.M., Shimizu, M., Rosman, A.S., Lieber, C.S., 1989. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 10, 437–446.

    Article  Google Scholar 

  • Wallace, L., 1990. Major sources of exposure to benzene and other volatile organic chemicals. Risk Anal. 10, 59–64.

    Article  Google Scholar 

  • Yardley-Jones, A., Anderson, D., Parke, D.V., 1991. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. Br. J. Ind. Med. 48, 437–444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cammey C. Manning.

Additional information

Supported via a fellowship from CIIT Centers for Health Research while she was a graduate student in the Center for Research in Scientific Computation at North Carolina State University.

Current address: U.S. EPA, NCEA, M.D. B243-01, Research Triangle Park, NC, 27711.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, C.C., Schlosser, P.M. & Tran, H.T. A Multicompartment Liver-based Pharmacokinetic Model for Benzene and its Metabolites in Mice. Bull. Math. Biol. 72, 507–540 (2010). https://doi.org/10.1007/s11538-009-9459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9459-x

Navigation