Skip to main content

Physiologically Based Pharmacokinetic/Toxicokinetic Modeling

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Physiologically based pharmacokinetic (PBPK) models differ from conventional compartmental pharmacokinetic models in that they are based to a large extent on the actual physiology of the organism. The application of pharmacokinetics to toxicology or risk assessment requires that the toxic effects in a particular tissue are related in some way to the concentration time course of an active form of the substance in that tissue. The motivation for applying pharmacokinetics is the expectation that the observed effects of a chemical will be more simply and directly related to a measure of target tissue exposure than to a measure of administered dose. The goal of this work is to provide the reader with an understanding of PBPK modeling and its utility as well as the procedures used in the development and implementation of a model to chemical safety assessment using the styrene PBPK model as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen ME (1981) Saturable metabolism and its relation to toxicity. Crit Rev Toxicol 9:105–150

    Article  PubMed  CAS  Google Scholar 

  2. Monro A (1992) What is an appropriate measure of exposure when testing drugs for carcinogenicity in rodents? Toxicol Appl Pharmacol 112:171–181

    Article  PubMed  CAS  Google Scholar 

  3. Andersen ME, Clewell HJ, Krishnan K (1995) Tissue dosimetry, pharmacokinetic modeling, and interspecies scaling factors. Risk Anal 15:533–537

    Article  PubMed  CAS  Google Scholar 

  4. Teorell T (1937) Kinetics of distribution of substances administered to the body. I. The extravascular mode of administration. Arch Int Pharmacodyn 57:205–225

    CAS  Google Scholar 

  5. Teorell T (1937) Kinetics of distribution of substances administered to the body. I. The intravascular mode of administration. Arch Int Pharmacodyn 57:226–240

    CAS  Google Scholar 

  6. O’Flaherty EJ (1987) Modeling: an introduction. National Research Council. In: Pharmacokinetics in risk assessment. Drinking water and health, vol 8. National Academy Press, Washington DC, pp. 27–35

    Google Scholar 

  7. Clewell HJ, Andersen ME (1985) Risk assessment extrapolations and physiological modeling. Toxicol Ind Health 1(4):111–131

    PubMed  CAS  Google Scholar 

  8. Andersen ME, Clewell HJ, Gargas ML, Smith FA, Reitz RH (1987) Physiologically based pharmacokinetics and the risk assessment for methylene chloride. Toxicol Appl Pharmacol 87:185–205

    Article  PubMed  CAS  Google Scholar 

  9. Gerrity TR, Henry CJ (1990) Principles of route-to-route extrapolation for risk assessment. Elsevier, New York

    Google Scholar 

  10. Clewell HJ, Jarnot BM (1994) Incorporation of pharmacokinetics in non-carcinogenic risk assessment: Example with chloropentafluorobenzene. Risk Anal 14:265–276

    Article  PubMed  Google Scholar 

  11. Clewell HJ (1995) Incorporating biological information in quantitative risk assessment: an example with methylene chloride. Toxicology 102:83–94

    Article  PubMed  CAS  Google Scholar 

  12. Clewell HJ (1995) The application of physiologically based pharmacokinetic modeling in human health risk assessment of hazardous substances. Toxicol Lett 79:207–217

    Article  PubMed  CAS  Google Scholar 

  13. Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME (1995) Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: examples with vinyl chloride and trichloroethylene. Chemosphere 31:2561–2578

    Article  PubMed  CAS  Google Scholar 

  14. Clewell HJ, Andersen ME (1996) Use of physiologically-based pharmacokinetic modeling to investigate individual versus population risk. Toxicology 111:315–329

    Article  PubMed  CAS  Google Scholar 

  15. Clewell HJ III, Gentry PR, Gearhart JM (1997) Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. J Toxicol Environ Health 52:475–515

    Article  PubMed  CAS  Google Scholar 

  16. Himmelstein KJ, Lutz RJ (1979) A review of the application of physiologically based pharmacokinetic modeling. J Pharmacokinet Biopharm 7:127–145

    PubMed  CAS  Google Scholar 

  17. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72:1103–1126

    Article  PubMed  CAS  Google Scholar 

  18. Fiserova-Bergerova V (1983) Modeling of inhalation exposure to vapors: uptake distribution and elimination, vol 1 and 2. CRC, Boca Raton

    Google Scholar 

  19. Bischoff KB (1987) Physiologically based pharmacokinetic modeling. National Research Council. In: Pharmacokinetics in Risk Assessment. Drinking water and health, vol 8. National Academy Press, Washington, DC, pp. 36–61

    Google Scholar 

  20. Leung HW (1991) Development and utilization of physiologically based pharmacokinetic models for toxicological applications. J Toxicol Environ Health 32:247–267

    Article  PubMed  CAS  Google Scholar 

  21. Clewell HJ, Andersen ME (1986) A multiple dose-route physiological pharmacokinetic model for volatile chemicals using ACSL/PC. In: Cellier FD (ed) Languages for continuous system simulation. Society for Computer Simulation, San Diego, pp 95–101

    Google Scholar 

  22. Ramsey JC, Andersen ME (1984) A physiological model for the inhalation pharmacokinetics of inhaled styrene monomer in rats and humans. Toxicol Appl Pharmacol 73:159–175

    Article  PubMed  CAS  Google Scholar 

  23. Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109:579–585

    Article  PubMed  CAS  Google Scholar 

  24. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1:435–461

    PubMed  CAS  Google Scholar 

  25. Dedrick RL, Bischoff KB (1980) Species similarities in pharmacokinetics. Fed Proc 39:54–59

    PubMed  CAS  Google Scholar 

  26. McDougal JN, Jepson GW, Clewell HJ, MacNaughton MG, Andersen ME (1986) A physiological pharmacokinetic model for dermal absorption of vapors in the rat. Toxicol Appl Pharmacol 85:286–294

    Article  PubMed  CAS  Google Scholar 

  27. Paustenbach DJ, Clewell HJ, Gargas ML, Andersen ME (1988) A physiologically based pharmacokinetic model for inhaled carbon tetrachloride. Toxicol Appl Pharmacol 96:191–211

    Article  PubMed  CAS  Google Scholar 

  28. Vinegar A, Seckel CS, Pollard DL, Kinkead ER, Conolly RB, Andersen ME (1992) Polychlorotrifluoroethylene (PCTFE) oligomer pharmacokinetics in Fischer 344 rats: development of a physiologically based model. Fundam Appl Toxicol 18:504–514

    Article  PubMed  CAS  Google Scholar 

  29. Clewell HJ, Andersen ME (1989) Improving toxicology testing protocols using computer simulations. Toxicol Lett 49:139–158

    Article  PubMed  CAS  Google Scholar 

  30. Bischoff KB, Brown RG (1966) Drug distribution in mammals. Chem Eng Prog Symp 62(66):33–45

    CAS  Google Scholar 

  31. Astrand P, Rodahl K (1970) Textbook of work physiology. McGraw-Hill, New York

    Google Scholar 

  32. International Commission on Radiological Protection (ICRP) (1975) Report of the task group on reference man. ICRP Publication 23

    Google Scholar 

  33. Environmental Protection Agency (EPA) (1988) Reference physiological parameters in pharmacokinetic modeling. EPA/600/6-88/004. Office of Health and Environmental Assessment, Washington, DC

    Google Scholar 

  34. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    Article  PubMed  CAS  Google Scholar 

  35. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484

    PubMed  CAS  Google Scholar 

  36. Sato A, Nakajima T (1979) Partition coefficients of some aromatic hydrocarbons and ketones in water, blood and oil. Br J Ind Med 36:231–234

    PubMed  CAS  Google Scholar 

  37. Sato A, Nakajima T (1979) A vial equilibration method to evaluate the drug metabolizing enzyme activity for volatile hydrocarbons. Toxicol Appl Pharmacol 47:41–46

    Article  PubMed  CAS  Google Scholar 

  38. Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME (1989) Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 98:87–99

    Article  PubMed  CAS  Google Scholar 

  39. Jepson GW, Hoover DK, Black RK, McCafferty JD, Mahle DA, Gearhart JM (1994) A partition coefficient determination method for nonvolatile chemicals in biological tissues. Fundam Appl Toxicol 22:519–524

    Article  PubMed  CAS  Google Scholar 

  40. Clewell HJ (1993) Coupling of computer modeling with in vitro methodologies to reduce animal usage in toxicity testing. Toxicol Lett 68:101–117

    Article  PubMed  CAS  Google Scholar 

  41. Bischoff KB, Dedrick RL, Zaharko DS, Longstreth JA (1971) Methotrexate pharmacokinetics. J Pharm Sci 60:1128–1133

    Article  PubMed  CAS  Google Scholar 

  42. Farris FF, Dedrick RL, King FG (1988) Cisplatin pharmacokinetics: application of a physiological model. Toxicol Lett 43:117–137

    Article  PubMed  CAS  Google Scholar 

  43. Edginton AN, Theil FP, Schmitt W, Willmann S (2008) Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol 4:1143–1152

    Article  PubMed  CAS  Google Scholar 

  44. Andersen ME, Clewell HJ III, Gargas ML, MacNaughton MG, Reitz RH, Nolan R, McKenna M (1991) Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite carbon monoxide, and blood carboxyhemoglobin in rats and humans. Toxicol Appl Pharmacol 108:14–27

    Article  PubMed  CAS  Google Scholar 

  45. Andersen ME, Clewell HJ, Mahle DA, Gearhart JM (1994) Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo. Toxicol Appl Pharmacol 128:158–165

    Article  PubMed  CAS  Google Scholar 

  46. Fisher J, Gargas M, Allen B, Andersen M (1991) Physiologically based pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic acid, in the rat and mouse. Toxicol Appl Pharmacol 109:183–195

    Article  PubMed  CAS  Google Scholar 

  47. Fisher JW, Allen BC (1993) Evaluating the risk of liver cancer in humans exposed to trichloroethylene using physiological models. Risk Anal 13:87–95

    Article  PubMed  CAS  Google Scholar 

  48. Allen BC, Fisher J (1993) Pharmacokinetic modeling of trichloroethylene and trichloroacetic acid in humans. Risk Anal 13:71–86

    Article  PubMed  CAS  Google Scholar 

  49. Corley RA, Mendrala AL, Smith FA, Staats DA, Gargas ML, Conolly RB, Andersen ME, Reitz RH (1990) Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol 103:512–527

    Article  PubMed  CAS  Google Scholar 

  50. Reitz RH, Mendrala AL, Corley RA, Quast JF, Gargas ML, Andersen ME, Staats DA, Conolly RB (1990) Estimating the risk of liver cancer associated with human exposures to chloroform using physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol 105:443–459

    Article  PubMed  CAS  Google Scholar 

  51. Johanson G (1986) Physiologically based pharmacokinetic modeling of inhaled 2-butoxyethanol in man. Toxicol Lett 34:23–31

    Article  PubMed  CAS  Google Scholar 

  52. Bungay PM, Dedrick RL, Matthews HB (1981) Enteric transport of chlordecone (Kepone) in the rat. J Pharmacokinet Biopharm 9:309–341

    PubMed  CAS  Google Scholar 

  53. Tuey DB, Matthews HB (1980) Distribution and excretion of 2,2′,4,4′,5,5′-hexabromobiphenyl in rats and man: pharmacokinetic model predictions. Toxicol Appl Pharmacol 53:420–431

    Article  PubMed  CAS  Google Scholar 

  54. Lutz RJ, Dedrick RL, Tuey D, Sipes IG, Anderson MW, Matthews HB (1984) Comparison of the pharmacokinetics of several polychlorinated biphenyls in mouse, rat, dog, and monkey by means of a physiological pharmacokinetic model. Drug Metab Dispos 12(5):527–535

    PubMed  CAS  Google Scholar 

  55. King FG, Dedrick RL, Collins JM, Matthews HB, Birnbaum LS (1983) Physiological model for the pharmacokinetics of 2,3,7,8-tetrachlorodibenzofuran in several species. Toxicol Appl Pharmacol 67:390–400

    Article  PubMed  CAS  Google Scholar 

  56. Leung HW, Ku RH, Paustenbach DJ, Andersen ME (1988) A physiologically based pharmacokinetic model for 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J and DBA/2J mice. Toxicol Lett 42:15–28

    Article  PubMed  CAS  Google Scholar 

  57. Andersen ME, Mills JJ, Gargas ML, Kedderis L, Birnbaum LS, Norbert D, Greenlee WF (1993) Modeling receptor-mediated processes with dioxin: implications for pharmacokinetics and risk assessment. Risk Anal 13(1):25–36

    Article  PubMed  CAS  Google Scholar 

  58. O’Flaherty EJ (1991) Physiologically based models for bone seeking elements. I. Rat skeletal and bone growth. Toxicol Appl Pharmacol 111:299–312

    Article  PubMed  Google Scholar 

  59. O’Flaherty EJ (1991) Physiologically based models for bone seeking elements. II. Kinetics of lead disposition in rats. Toxicol Appl Pharmacol 111:313–331

    Article  PubMed  Google Scholar 

  60. O’Flaherty EJ (1991) Physiologically based models for bone seeking elements. III. Human skeletal and bone growth. Toxicol Appl Pharmacol 111:332–341

    Article  PubMed  Google Scholar 

  61. O’Flaherty EJ (1993) Physiologically based models for bone seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol 118:16–29

    Article  PubMed  Google Scholar 

  62. O’Flaherty EJ (1995) Physiologically based models for bone seeking elements. V. Lead absorption and disposition in childhood. Toxicol Appl Pharmacol 131:297–308

    Article  PubMed  Google Scholar 

  63. Mann S, Droz PO, Vahter M (1996) A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits. Toxicol Appl Pharmacol 137:8–22

    Article  PubMed  CAS  Google Scholar 

  64. Mann S, Droz PO, Vahter M (1996) A physiologically based pharmacokinetic model for arsenic exposure. II. Validation and application in humans. Toxicol Appl Pharmacol 140:471–486

    Article  PubMed  CAS  Google Scholar 

  65. Farris FF, Dedrick RL, Allen PV, Smith JC (1993) Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol Appl Pharmacol 119:74–90

    Article  PubMed  CAS  Google Scholar 

  66. McMullin TS, Hanneman WH, Cranmer BK, Tessari JD, Andersen ME (2007) Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches. Toxicology 240:1–14

    Article  PubMed  CAS  Google Scholar 

  67. Lin Z, Fisher JW, Ross MK, Filipov NM (2011) A physiologically based pharmacokinetic model for atrazine and its main metabolites in the adult male C57BL/6 mouse. Toxicol Appl Pharmacol 251:16–31

    Article  PubMed  CAS  Google Scholar 

  68. Kirman CR, Hays SM, Kedderis GL, Gargas ML, Strother DE (2000) Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat. Risk Anal 20:135–151

    Article  PubMed  CAS  Google Scholar 

  69. Sweeney LM, Gargas ML, Strother DE, Kedderis GL (2003) Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans. Toxicol Sci 71:27–40

    Article  PubMed  CAS  Google Scholar 

  70. Takano R, Murayama N, Horiuchi K, Kitajima M, Kumamoto M, Shono F, Yamazaki H (2010) Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling. Regul Toxicol Pharmacol 58:252–258

    Article  PubMed  CAS  Google Scholar 

  71. Clewell RA, Merrill EA, Robinson PJ (2001) The use of physiologically based models to integrate diverse data sets and reduce uncertainty in the prediction of perchlorate and iodide kinetics across life stages and species. Toxicol Ind Health 17:210–222

    Article  PubMed  CAS  Google Scholar 

  72. Clewell RA, Merrill EA, Yu KO, Mahle DA, Sterner TR, Mattie DR, Robinson PJ, Fisher JW, Gearhart JM (2003) Predicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: a physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat. Toxicol Sci 73:235–255

    Article  PubMed  CAS  Google Scholar 

  73. Clewell RA, Merrill EA, Yu KO, Mahle DA, Sterner TR, Fisher JW, Gearhart JM (2003) Predicting neonatal perchlorate dose and inhibition of iodide uptake in the rat during lactation using physiologically-based pharmacokinetic modeling. Toxicol Sci 74:416–436

    Article  PubMed  CAS  Google Scholar 

  74. Merrill EA, Clewell RA, Gearhart JM, Robinson PJ, Sterner TR, Yu KO, Mattie DR, Fisher JW (2003) PBPK predictions of perchlorate distribution and its effect on thyroid uptake of radioiodide in the male rat. Toxicol Sci 73:256–269

    Article  PubMed  CAS  Google Scholar 

  75. Merrill EA, Clewell RA, Robinson PJ, Jarabek AM, Gearhart JM, Sterner TR, Fisher JW (2005) PBPK model for radioactive iodide and perchlorate kinetics and perchlorate-induced inhibition of iodide uptake in humans. Toxicol Sci 83:25–43

    Article  PubMed  CAS  Google Scholar 

  76. McLanahan ED, Andersen ME, Campbell JL, Fisher JW (2009) Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH. Environ Health Perspect 117:731–738

    Article  PubMed  CAS  Google Scholar 

  77. Haddad S, Charest-Tardif G, Tardif R, Krishnan K (2000) Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Toxicol Appl Pharmacol 167:199–209

    Article  PubMed  CAS  Google Scholar 

  78. Haddad S, Beliveau M, Tardif R, Krishnan K (2001) A PBPK modeling-based approach to account for interactions in the health risk assessment of chemical mixtures. Toxicol Sci 63:125–131

    Article  PubMed  CAS  Google Scholar 

  79. Dennison JE, Andersen ME, Yang RS (2003) Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach. Inhal Toxicol 15:961–986

    PubMed  CAS  Google Scholar 

  80. Dennison JE, Andersen ME, Clewell HJ, Yang RSH (2004) Development of a physiologically based pharmacokinetic model for volatile fractions of gasoline using chemical lumping analysis. Environ Sci Technol 38:5674–5681

    Article  PubMed  CAS  Google Scholar 

  81. Campbell JL, Fisher JW (2007) A PBPK modeling assessment of the competitive metabolic interactions of JP-8 vapor with two constituents, m-xylene and ethylbenzene. Inhal Toxicol 19:265–273

    Article  PubMed  CAS  Google Scholar 

  82. Rowland M, Balant L, Peck C (2004) Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report (Georgetown University, Washington, DC, May 29-30, 2002). AAPS PharmSci 6:56–67

    Article  Google Scholar 

  83. Ramsey JC, Young JD (1978) Pharmacokinetics of inhaled styrene in rats and humans. Scand J Work Environ Health 4:84–91

    Article  PubMed  CAS  Google Scholar 

  84. Ramsey JC, Young JD, Karbowski R, Chenoweth MB, Mc Carty LP, Braun WH (1980) Pharmacokinetics of inhaled styrene in human volunteers. Toxicol Appl Pharmacol 53:54–63

    Article  PubMed  CAS  Google Scholar 

  85. Stewart RD, Dodd HC, Baretta ED, Schaffer AW (1968) Human exposure to styrene vapors. Arch Environ Health 16:656–662

    PubMed  CAS  Google Scholar 

  86. Gearhart JM, Clewell HJ, Crump KS, Shipp AM, Silvers A (1995) Pharmacokinetic dose estimates of mercury in children and dose-response curves of performance tests in a large epidemiological study. Water Air Soil Pollut 80:49–58

    Article  CAS  Google Scholar 

  87. Gearhart JM, Jepson GW, Clewell HJ, Andersen ME, Conolly RB (1990) Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate. Toxicol Appl Pharmacol 106:295–310

    Article  PubMed  CAS  Google Scholar 

  88. Gearhart JM, Jepson GW, Clewell HJ, Andersen ME, Connoly RB (1995) A physiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters. Environ Health Perspect 102(11):51–60

    Article  Google Scholar 

  89. Fisher JW, Whittaker TA, Taylor DH, Clewell HJ, Andersen ME (1989) Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichlorethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 99:395–414

    Article  PubMed  CAS  Google Scholar 

  90. Fisher JW, Whittaker TA, Taylor DH, Clewell HJ, Andersen ME (1990) Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichlorethylene and its metabolite, trichloroacetic acid. Toxicol Appl Pharmacol 102:497–513

    Article  PubMed  CAS  Google Scholar 

  91. Luecke RH, Wosilait WD, Pearce BA, Young JF (1994) A physiologically based pharmacokinetic computer model for human pregnancy. Teratology 49:90–103

    Article  PubMed  CAS  Google Scholar 

  92. Andersen ME, Gargas ML, Clewell HJ, Severyn KM (1987) Quantitative evaluation of the metabolic interactions between trichloroethylene and 1,1-dichloroethylene by gas uptake methods. Toxicol Appl Pharmacol 89:149–157

    Article  PubMed  CAS  Google Scholar 

  93. Mumtaz MM, Sipes IG, Clewell HJ, Yang RSH (1993) Risk assessment of chemical mixtures: biological and toxicologic issues. Fundam Appl Toxicol 21:258–269

    Article  PubMed  CAS  Google Scholar 

  94. Barton HA, Creech JR, Godin CS, Randall GM, Seckel CS (1995) Chloroethylene mixtures: pharmacokinetic modeling and in vitro metabolism of vinyl chloride, trichloroethylene, and trans-1,2-dichloroethylene in rat. Toxicol Appl Pharmacol 130:237–247

    Article  PubMed  CAS  Google Scholar 

  95. Clewell HJ, Lee T, Carpenter RL (1994) Sensitivity of physiologically based pharmacokinetic models to variation in model parameters: methylene chloride. Risk Anal 14:521–531

    Article  PubMed  Google Scholar 

  96. Andersen ME, Gargas ML, Ramsey JC (1984) Inhalation pharmacokinetics: evaluating systemic extraction, total in vivo metabolism and the time course of enzyme induction for inhaled styrene in rats based on arterial blood:inhaled air concentration ratios. Toxicol Appl Pharmacol 73:176–187

    Article  PubMed  CAS  Google Scholar 

  97. Andersen ME, Clewell HJ, Frederick CB (1995) Applying simulation modeling to problems in toxicology and risk assessment—a short perspective. Toxicol Appl Pharmacol 133:181–187

    Article  PubMed  CAS  Google Scholar 

  98. Vinegar A, Winsett DW, Andersen ME, Conolly RB (1990) Use of a physiologically based pharmacokinetic model and computer simulation for retrospective assessment of exposure to volatile toxicants. Inhal Toxicol 2:119–128

    Article  CAS  Google Scholar 

  99. Vinegar A, Jepson GW (1996) Cardiac sensitization thresholds of halon replacement chemicals predicted in humans by physiologically-based pharmacokinetic modeling. Risk Anal 16:571–579

    Article  PubMed  CAS  Google Scholar 

  100. Clewell HJ, Andersen ME, Wills RJ, Latriano L (1997) A physiologically based pharmacokinetic model for retinoic acid and its metabolites. J Am Acad Dermatol 36:S77–S85

    Article  PubMed  Google Scholar 

  101. Fiserova-Bergerova V (1975) Biological—mathematical modeling of chronic toxicity. AMRL-TR-75-5. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base

    Google Scholar 

  102. Gargas ML, Andersen ME (1989) Determining kinetic constants of chlorinated ethane metabolism in the rat from rates of exhalation. Toxicol Appl Pharmacol 97:230–246

    Article  Google Scholar 

  103. Gargas ML, Andersen ME, Clewell HJ (1986) A physiologically-based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol 86:341–352

    Article  PubMed  CAS  Google Scholar 

  104. Gargas ML, Clewell HJ, Andersen ME (1990) Gas uptake techniques and the rates of metabolism of chloromethanes, chloroethanes, and chloroethylenes in the rat. Inhal Toxicol 2:295–319

    Article  CAS  Google Scholar 

  105. Reitz RH, Mendrala AL, Guengerich FP (1989) In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically-based pharmacokinetic models. Toxicol Appl Pharmacol 97:230–246

    Article  PubMed  CAS  Google Scholar 

  106. Filser JG, Bolt HM (1979) Pharmacokinetics of halogenated ethylenes in rats. Arch Toxicol 42:123–136

    Article  PubMed  CAS  Google Scholar 

  107. Andersen ME, Gargas ML, Jones RA, Jenkins LH Jr (1980) Determination of the kinetic constants of metabolism of inhaled toxicant in vivo based on gas uptake measurements. Toxicol Appl Pharmacol 54:100–116

    Article  PubMed  CAS  Google Scholar 

  108. Gargas ML, Clewell HJ, Andersen ME (1986) Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways. Toxicol Appl Pharmacol 82:211–223

    Article  PubMed  CAS  Google Scholar 

  109. Watanabe P, Mc Gown G, Gehring P (1976) Fate of [14] vinyl chloride after single oral administration in rats. Toxicol Appl Pharmacol 36:339–352

    Article  PubMed  CAS  Google Scholar 

  110. Gargas ML, Andersen ME (1982) Metabolism of inhaled brominated hydrocarbons: validation of gas uptake results by determination of a stable metabolite. Toxicol Appl Pharmacol 66:55–68

    Article  PubMed  CAS  Google Scholar 

  111. Lam G, Chen M, Chiou WL (1981) Determination of tissue to blood partition coefficients in physiologically-based pharmacokinetic studies. J Pharm Sci 71(4):454–456

    Article  Google Scholar 

  112. O’Flaherty EJ (1995) PBPK modeling for metals. Examples with lead, uranium, and chromium. Toxicol Lett 82–83:367–372

    Article  PubMed  Google Scholar 

  113. Environmental Protection Agency (EPA) (1992) EPA request for comments on draft report of cross-species scaling factor for cancer risk assessment. Fed Reg 57:24152

    Google Scholar 

  114. Carson ER, Cobelli C, Finkelstein L (1983) The mathematical modeling of metabolic and endocrine systems model formulation, identification, and validation. Wiley, New York

    Google Scholar 

  115. Rescigno A, Beck JS (1987) The use and abuse of models. J Pharmacokinet Biopharm 15:327–340

    PubMed  CAS  Google Scholar 

  116. Yates FE (1978) Good manners in good modeling: mathematical models and computer simulations of physiological systems. Am J Physiol 234:R159–R160

    PubMed  CAS  Google Scholar 

  117. Clewell HJ (1995) The use of physiologically based pharmacokinetic modeling in risk assessment: a case study with methylene chloride. In: Olin S, Farland W, Park C, Rhomberg L, Scheuplein R, Starr T, Wilson J (eds) Low-dose extrapolation of cancer risks: issues and perspectives. ILSI, Washington, DC

    Google Scholar 

  118. Allen BC, Covington TR, Clewell HJ (1996) Investigation of the impact of pharmacokinetic variability and uncertainty on risks predicted with a pharmacokinetic model for chloroform. Toxicology 111:289–303

    Article  PubMed  CAS  Google Scholar 

  119. Clewell HJ, Andersen ME (1994) Physiologically-based pharmacokinetic modeling and bioactivation of xenobiotics. Toxicol Ind Health 10:1–24

    PubMed  CAS  Google Scholar 

  120. D’Souza RW, Francis WR, Andersen ME (1988) Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. J Pharmacol Exp Ther 245:563–568

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry L. Campbell Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Campbell, J.L., Clewell, R.A., Gentry, P.R., Andersen, M.E., Clewell, H.J. (2012). Physiologically Based Pharmacokinetic/Toxicokinetic Modeling. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics