Skip to main content

Advertisement

Log in

A Compartmental Model for Activity-Dependent Dendritic Spine Branching

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Dendritic spines are small, mushroom-like protrusions from the arbor of a neuron in the central nervous system. Interdependent changes in the morphology, biochemistry, and activity of spines have been associated with learning and memory. Moreover, post-mortem cortices from patients with Alzheimer’s or Parkinson’s disease exhibit biochemical and physical alterations within their dendritic arbors and a reduction in the number of dendritic spines. For over a decade, experimentalists have observed perforations in postsynaptic densities on dendritic spines after induction of long-term potentiation, a sustained enhancement of response to a brief electrical or chemical stimulus, associated with learning and memory. In more recent work, some suggest that activity-dependent intraspine calcium may regulate the surface area of the spine head, and reorganization of postsynaptic densities on the surface.

In this paper, we develop a model of a dendritic spine with the ability to partition its transmission and receptor zones, as well as the entire spine head. Simulations are initially performed with fixed parameters for morphology to study electrical properties and identify parameters that increase efficacy of the synaptic connection. Equations are then introduced to incorporate calcium as a second messenger in regulating continuous changes in morphology. In the model, activity affects compartmental calcium, which regulates spine head morphology. Conversely, spine head morphology affects the level of local activity, whether the spines are modeled with passive membrane properties, or excitable membrane using Hodgkin–Huxley kinetics. Results indicate that merely separating the postsynaptic receptors on the surface of the spine may add to the diversity of circuitry, but does not change the efficacy of the synapse. However, when the surface area of the spine is a dynamic variable, efficacy of the synapse may vary continuously over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, C.G., Tampellini, D., Takahashi, R.H., Greengard, P., Lin, M.T., Snyder, E.M., Gouras, G.K., 2005. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurbiol. Dis. 20(2), 187–198.

    Article  Google Scholar 

  • Aradi, I., Holmes, W.R., 1999. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J. Comput. Neurosci. 6, 215–235.

    Article  MATH  Google Scholar 

  • Araya, R., Nikolenko, V., Eisenthal, K.B., Yuste, R., 2007. Sodium channels amplify spine potentials. Proc. Natl. Acad. Sci. USA 104(30), 12347–12352.

    Article  Google Scholar 

  • Baer, S.M., Rinzel, J., 1991. Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J. Neurophysiol. 65, 874–890.

    Google Scholar 

  • Barinaga, M., 2000. Synapses call the shots (review article). Science 290, 736–738.

    Article  Google Scholar 

  • Brauer, F., Nohel, J.A., 1969. Qualitative Theory of Ordinary Differential Equation. Benjamin, New York.

    Google Scholar 

  • Deller, T., Mundel, P., Frotscher, M., 2000. Potential role of synaptopodin in spine motility by coupling actin to the spine apparatus. Hippocampus 10(5), 569–581.

    Article  Google Scholar 

  • Edwards, F.A., 1995. LTP—a structural model to explain the inconsistencies. Trends Neurosci. 18(6), 250–255.

    Article  Google Scholar 

  • Fiala, J.C., Allwardt, B., Harris, K.M., 2002. Dendritic spines do not split during hippocampal LTP or maturation. Nat. Neurosci. 5(4), 297–298.

    Article  Google Scholar 

  • Geinisman, Y., deToledo-Morrell, L., Morrell, F., Heller, R.E., Rossi, M., Parshall, R.F., 1993. Structural synaptic correlate of long-term potentiation: Formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3(4), 435–446.

    Article  Google Scholar 

  • Geinisman, Y., deToledo-Morrell, L., Morrell, F., Persina, I.S., Beatty, M.A., 1996. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368(6), 413–423.

    Article  Google Scholar 

  • Gurkiewicz, M., Korngreen, A., 2007. A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput. Biol. 3(8), 169.

    Article  MathSciNet  Google Scholar 

  • Halpain, S., Hipolito, A., Saffer, L., 1998. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844.

    Google Scholar 

  • Harris, K.M., 1999a. Calcium from internal stores modifies dendritic spine shape. Proc. Natl. Acad. Sci. 96, 12213–12215.

    Article  Google Scholar 

  • Harris, K.M., 1999b. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348.

    Article  Google Scholar 

  • Hausser, M., Spruston, N., Stuart, G.L., 2000. Diversity and dynamics of dendritic signaling. Science 290, 739–744.

    Article  Google Scholar 

  • Hodgkin, A., Huxley, A., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    Google Scholar 

  • Holmes, W.R., Levy, W.B., 1997. Quantifying the role of inhibition in associative long-term potentiation in dentate granule cells with computational models. J. Neurophysiol. 78, 103–116.

    Google Scholar 

  • Johnston, D., Miao-Sin Wu, S., 1995. Foundations of Cellular Neurophysiology. MIT Press, Cambridge.

    Google Scholar 

  • Korkortian, E., Segal, M., 1999. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. 96, 12068–12072.

    Article  Google Scholar 

  • Luscher, C., Nicoll, R.A., Malenka, R.C., Muller, D., 2000. Synaptic plasticity and dynamic modulation of the postsynaptic membrane (review article). Nat. Neurosci. 3(6), 545–550.

    Article  Google Scholar 

  • Mahadomrongkul, V., Huerta, P.T., Shirao, T., Aoki, C., 2005. Stability of the distribution of spines containing drebrin A in the sensory cortex lay I of mice expressing mutated APP and PS1 genes. Brain Res. 164(1–2), 66–74.

    Article  Google Scholar 

  • Matus, A., 2000. Actin based plasticity in dendritic spines. Science 290, 754–758.

    Article  Google Scholar 

  • Miller, J.P., Rall, W., Rinzel, J., 1985. Synaptic amplification by active membrane in dendritic spines. Brain Res. 325, 325–330.

    Article  Google Scholar 

  • Mogilner, A., Verzi, D.W., 2003. A simple 1-D physical model for the crawling nematode sperm cell. J. Stat. Phys. 110, 1169–1189.

    Article  MATH  Google Scholar 

  • Neuhoff, H., Roeper, J., Schweizer, M., 1999. Activity-dependent formation of perforated synapses in cultured hippocampal neurons. Eur. J. Neurol. 11, 4241–4250.

    Google Scholar 

  • Rall, W., 1953. Electrotonic theory for spherical neurone. Proc. Univ. Otago Med. Sch. 31, 14–15.

    Google Scholar 

  • Rose, C.R., Konnerth, A., 2001. NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21(12), 4207–4214.

    Google Scholar 

  • Rose, C.R., Kovalchuk, Y., Eilers, J., Konnerth, A., 1999. Two-photon Na+ imaging in spines and fine dendrites of central neurons. Eur. J. Physiol. 439(1–2), 201–207.

    Article  Google Scholar 

  • Rusakov, D.A., Stewart, M.G., Korogod, S.M., 1996. Branching of active dendritic spines as a mechanism for controlling synaptic efficacy. Neuroscience 75(1), 315–323.

    Article  Google Scholar 

  • Schmid, G., Hannggi, P., 2007. Intrinsic coherence resonance in excitable membrane patches. Math. Biosci. 207(2), 235–245.

    Article  MATH  MathSciNet  Google Scholar 

  • Segev, I., London, M., 2000. Untangling dendrites with quantitative models. Science 290, 744–749.

    Article  Google Scholar 

  • Segev, I., Rall, W., 1988. Computational study of an excitable dendritic spine. J. Neurophysiol. 60, 499–523.

    Google Scholar 

  • Segev, I., Rall, W., 1998. Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460.

    Article  Google Scholar 

  • Sorra, K.E., Fiala, J.C., Harris, K.M., 1999. Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J. Comp. Neurol. 398, 225–240.

    Article  Google Scholar 

  • Stephens, B., Mueller, A.J., Shering, A.F., Hood, S.H., Taggart, P., Arbuthnott, G.W., Bell, J.E., Kilford, L., Kingsbury, A.E., Daniel, S.E., Ingham, C.A., 2005. Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132(3), 741–754.

    Article  Google Scholar 

  • Timofeeva, Y., Lord, G.J., Coombes, S., 2006. Spatio-temporal filtering properties of a dendritic cable with active spines: A modeling study in the spike-diffuse-spike framework. J. Comput. Neurosci. 21, 293–306.

    Article  MathSciNet  Google Scholar 

  • Verzi, D.W., 2004. Modeling activity-dependent synapse restructuring. B. Math. Biol. 66, 745–762.

    Article  MathSciNet  Google Scholar 

  • Verzi, D.W., Baer, S.M., 2005. Calcium-mediated spine stem restructuring. J. Math. Comput. Model. 42, 151–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Verzi, D.W., Baer, S.M., Rheuben, M.B., 2005. Impact of time-dependent changes in spine density and spine shape on the input–output properties of a dendritic branch: A computational study. J. Neurophysiol. 93, 2073–2089.

    Article  Google Scholar 

  • Waltman, P., 1986. A Second Course in Elementary Differential Equations. Academic, Orlando.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Verzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verzi, D.W., Noris, O.Y. A Compartmental Model for Activity-Dependent Dendritic Spine Branching. Bull. Math. Biol. 71, 1048–1072 (2009). https://doi.org/10.1007/s11538-009-9393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9393-y

Keywords

Navigation