Skip to main content
Log in

Spatio-temporal filtering properties of a dendritic cable with active spines: A modeling study in the spike-diffuse-spike framework

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time-varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, ‘Mechanisms for generating temporal filters in the electrosensory system,’ The Journal of Experimental Biology 202: 1281–1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baer SM, Rinzel J (1991) Propagation of dendritic spikes mediated by excitable spines: A continuum theory. J Neurophysiol 65(4): 874–890.

    Google Scholar 

  • Benavides-Piccione R, Ballesteros-Yáñez I, DeFelipe J, Yuste R (2002) Cortical area and species differences in dendritic spine morphology. J. Neurocytol. 31(3–5): 337–346.

    Google Scholar 

  • Bonhoeffer T, Yuste R (2002) Spine motility: phenomenology, mechanisms and function. Neuron 35: 1019–1027.

    Google Scholar 

  • Bressloff PC, Coombes S (1997) Physics of the extended neuron. Int J. Modern. Phys. B 11: 2343–2392.

    Google Scholar 

  • Bressloff PC, Dwyer VM, Kearney MJ (1996) Sum-over-paths approach to diffusion on trees. J. Phys. A 29: 1881–1896.

    Google Scholar 

  • Cajal R (1891) Significación fisiológica de las expansiones protopl´asmicas y nerviosas de la sustancia gris. Revista de ciencias medicas de Barcelona 22: 23.

  • Cajal R (1899) Estudios sobre la cortexa cerebral humana: Corteza visual. Rev. Trim. Microgr. 4: 1–63.

    Google Scholar 

  • Cash S, Yuste R (1998) Input summation by cultured pyramidal neurons is linear and position independent. J Neurosci 18: 10–15.

    Google Scholar 

  • Coombes S (2001a) The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bull. Math. Biol. 63: 1–20.

    Google Scholar 

  • Coombes S (2001b) From periodic travelling waves to travelling fronts in the spike-diffuse-spike model of dendritic waves. Math. Biosci. 170: 155–172.

    Google Scholar 

  • Coombes S, Bressloff PC (2000) Solitary waves in a model of dendritic cable with active spines. SIAM J. Appl. Math. 61: 432–453.

    Google Scholar 

  • Coombes S, Bressloff PC (2003) Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Phys. Rev. Lett. 91: 028102.

    Google Scholar 

  • Da Prato G, Zabczyk J (1992) Stochastic Equations in Infinite Dimensions, Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press.

  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in mammalian CNS. Proc Natl Acad Sci USA 96(23): 13438–13443.

    Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spine. Neuron. 20(5): 847–854.

    Google Scholar 

  • Fortune ES, Rose GJ (1997) Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo. J. Neurosci. 17: 3815–3825.

    Google Scholar 

  • García-Ojalvo J, Sancho JM (1999) Noise in Spatially Extended Systems. Springer.

  • Hines ML, Carnevale NT (2003) The Handbook of Brain Theory and Neural Networks, Chapt. The NEURON simulation environment, pp. 769–773. Cambridge, MA: MIT Press.

  • Holcman D, Schuss Z (2005) Modeling calcium dynamics in dendritic spines. SIAM J. Appl. Math. 65(3): 1006–1026.

    Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric Current Flow in Excitable Cells. Clarendon Press.

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations, Vol. 23 of Applications of Mathematics. Springer–Verlag.

  • Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different corticallayers. Nature. 398: 338–341.

    Google Scholar 

  • Lippman J, Dunaevsky A (2005) Dendritic spine morphogenesis and plasticity. J. Neurobiol. 64(1): 47–57.

    Google Scholar 

  • Lord GJ, Coombes S (2002) Traveling waves in the Baer and Rinzel model of spine studded dendritic tissue. Physica. D. 161: 1–20.

    Google Scholar 

  • Lord GJ, Rougemont J (2004) A numerical scheme for stochastic PDEs with Gevrey regularity. IMA J. Numer. Anal. 24: 587–604.

    Google Scholar 

  • McKinney RA (2005) Physiological roles of spine motility: development, plasticity and disorders. Biochem. Soc. Trans. 33: 1299–1302.

    Google Scholar 

  • Mel BW, Ruderman DL, Archie KA (1998) Translation-invariant orientation tuning in visual ‘complex’ cells could derive from intradendritic computations. J. Neurosci. 18: 4325–4334.

    Google Scholar 

  • Miller JP, Rall W, Rinzel J (1985) Synaptic amplification by active membrane in dendritic spines. Brain. Res. 325: 325–330.

    Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7(6): 621–627.

    Google Scholar 

  • Rose GJ, Fortune ES (1996) New techniques for making whole-cell recordings from CNS neurons in vivo. Neurosci. Res. 26: 89–94.

    Google Scholar 

  • Rose GJ, Fortune ES (1999) Mechanisms for generating temporal filters in the electrosensory system. J. Exp. Biol. 202: 1281–1289.

    Google Scholar 

  • Segev I, Rall W (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends. Neurosci. 21(11): 453–460.

    Google Scholar 

  • Segev I, Rinzel J, Shepherd GM, eds. (1995) The theoretical foundations of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press.

  • Shardlow T (2005) Numerical simulation of stochastic PDEs for excitable media. J. Comput. Appl. Math. 175(2): 429–446.

    Google Scholar 

  • Shepherd GM, Brayton RK (1987) Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 21(1): 151–165.

    Google Scholar 

  • Shepherd GM, Brayton RK, Miller JP, Segev I, Rinzel J, Rall W (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proce Natl Acad Sci USA 82: 2192–2195.

    Google Scholar 

  • Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science. 272: 716–719.

    Google Scholar 

  • Tsay D, Yuste R (2004) On the electrical function of dendritic spines. Trends. Neurosci. 27(2): 77–83.

    Google Scholar 

  • Verzi DW, Rheuben MB, Baer SM (2005) Impact of time-dependent changes in spine density and spine shape on the input-output properties of a dendritic branch: A computational study. J. Neurophysiol. 93: 2073–2089.

    Google Scholar 

  • Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24: 1071–1089.

    Google Scholar 

  • Yuste R, Majewska A (2001) On the function of dendritic spines. Neuroscientist 7(5): 387–395.

    Google Scholar 

  • Zito K, Murthy VN (2002) Dendritic spines. Curr. Biol. 12: R5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Timofeeva.

Additional information

Action Editor: Erik De Schutter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeeva, Y., Lord, G.J. & Coombes, S. Spatio-temporal filtering properties of a dendritic cable with active spines: A modeling study in the spike-diffuse-spike framework. J Comput Neurosci 21, 293–306 (2006). https://doi.org/10.1007/s10827-006-8776-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-8776-4

Keywords

Navigation