Skip to main content
Log in

Asymptotic Analysis and Analytical Solutions of a Model of Cardiac Excitation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe an asymptotic approach to gated ionic models of single-cell cardiac excitability. It has a form essentially different from the Tikhonov fast-slow form assumed in standard asymptotic reductions of excitable systems. This is of interest since the standard approaches have been previously found inadequate to describe phenomena such as the dissipation of cardiac wave fronts and the shape of action potential at repolarization. The proposed asymptotic description overcomes these deficiencies by allowing, among other non-Tikhonov features, that a dynamical variable may change its character from fast to slow within a single solution. The general asymptotic approach is best demonstrated on an example which should be both simple and generic. The classical model of Purkinje fibers (Noble in J. Physiol. 160:317–352, 1962) has the simplest functional form of all cardiac models but according to the current understanding it assigns a physiologically incorrect role to the Na current. This leads us to suggest an “Archetypal Model” with the simplicity of the Noble model but with a structure more typical to contemporary cardiac models. We demonstrate that the Archetypal Model admits a complete asymptotic solution in quadratures. To validate our asymptotic approach, we proceed to consider an exactly solvable “caricature” of the Archetypal Model and demonstrate that the asymptotic of its exact solution coincides with the solutions obtained by substituting the “caricature” right-hand sides into the asymptotic solution of the generic Archetypal Model. This is necessary, because, unlike in standard asymptotic descriptions, no general results exist which can guarantee the proximity of the non-Tikhonov asymptotic solutions to the solutions of the corresponding detailed ionic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.), 1965. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover, New York.

    Google Scholar 

  • Aliev, R.R., Panfilov, A.V., 1996. A simple two-variable model of cardiac excitation. Chaos Solitons and Fractals 7(1), 293–301.

    Article  Google Scholar 

  • Attwell, D., Cohen, I., Eisner, D., Ohba, M., Ojeda, C., 1979. The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflug. Arch. 379(2), 137–142.

    Article  Google Scholar 

  • Beeler, G., Reuter, H., 1977. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268, 177–210.

    Google Scholar 

  • Bernus, O., Wilders, R., Zemlin, C.W., Verschelde, H., Panfilov, A.V., 2002. A computationally efficient electrophysiological model of human ventricular cells. Am. J. Physiol. Heart. Circ. Physiol. 282, 2296–2308.

    Google Scholar 

  • Biktashev, V., 2003. A simplified model of propagation and dissipation of excitation fronts. Int. J. Bifurc. Chaos 13(12), 3605–3620.

    Article  MATH  MathSciNet  Google Scholar 

  • Biktashev, V., Biktasheva, I., 2005. Dissipation of excitation fronts as a mechanism of conduction block in re-entrant waves. In: Lect. Notes Comp. Sci., vol. 3504, pp. 283–292. Springer, Berlin.

    Google Scholar 

  • Biktashev, V.N., 2002. Dissipation of the excitation wavefronts. Phys. Rev. Lett. 89(16), 168102.

    Article  Google Scholar 

  • Biktashev, V.N., Suckley, R., 2004. Non-Tikhonov asymptotic properties of cardiac excitability. Phys. Rev. Lett. 93(16), 168103.

    Article  Google Scholar 

  • Biktasheva, I., Biktashev, V., Dawes, W., Holden, A., Saumarez, R., Savill, A.M., 2003. Dissipation of the excitation front as a mechanism of self-terminating arrhythmias. Int. J. Bifurc. Chaos 13, 3645–3656.

    Article  MATH  MathSciNet  Google Scholar 

  • Biktasheva, I.V., Simitev, R.D., Suckley, R.S., Biktashev, V.N., 2006. Asymptotic properties of mathematical models of excitability. Philos. Trans. R. Soc. Lond. Ser. A 364(1842), 1283–1298.

    MathSciNet  MATH  Google Scholar 

  • Cherry, E.M., Fenton, F.H., 2007. A tale of two dogs: analyzing two models of canine ventricular electrophysiology. Am. J. Physiol. Heart. Circ. Physiol. 292, H43–H55.

    Article  Google Scholar 

  • Clayton, R.H., 2001. Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology. Physiol. Meas. 22, R15–R34.

    Article  Google Scholar 

  • Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321.

    Google Scholar 

  • Duckett, G., Barkley, D., 2000. Modeling the dynamics of cardiac action potentials. Phys. Rev. Lett. 85, 884–887.

    Article  Google Scholar 

  • Echebarria, B., Karma, A., 2002. Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Phys. Rev. Lett. 88(20), 208101.

    Article  Google Scholar 

  • Fenton, F., Karma, A., 1998. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47.

    Article  MATH  Google Scholar 

  • FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–456.

    Google Scholar 

  • Glass, L., Hunter, P.J., McCulloch, A.D., (eds.), 1991. Theory of Heart Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. Springer, New York.

    Google Scholar 

  • Hinch, R., 2002. An analytical study of the physiology and pathology of the propagation of cardiac action potentials. Prog. Biophys. Mol. Biol. 78, 45–81.

    Article  Google Scholar 

  • Hodgkin, A., Huxley, A., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

    Google Scholar 

  • Holden, A.V., Panfilov, A.V., (eds.), 1997. Computational Biology of the Heart. Wiley, New York.

    MATH  Google Scholar 

  • Iyer, V., Mazhari, R., Winslow, R.L., 2004. A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87, 1507–1525.

    Article  Google Scholar 

  • Karma, A., 1993. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71, 1103–1106.

    Article  MATH  MathSciNet  Google Scholar 

  • Kohl, P., Noble, D., Winslow, R.L., Hunter, P.J., 2000. Computational modelling of biological systems: tools and visions. Philos. Trans. R. Soc. Lond. A 358, 579–610.

    Article  MATH  Google Scholar 

  • Krinsky, V.I., Kokoz, Y.M., 1973a. Analysis of equations of excitable membranes—I. Reduction of the Hodgkin–Huxley equations to a second order system. Biofizika 18, 506–511.

    Google Scholar 

  • Krinsky, V.I., Kokoz, Y.M., 1973b. Analysis of equations of excitable membranes—III. Membrane of the Purkinje fibre. Reduction of the Noble equations to a second order system. Analysis of automation by the graphs of zero isoclines. Biofizika 18(6), 1067–1073.

    Google Scholar 

  • Luo, C.-H., Rudy, Y., 1991. A model of the ventricular action potential. Circ. Res. 68, 1501–1526.

    Google Scholar 

  • Mishchenko, E., Rozov, N., 1980. Differential Equations with Small Parameters and Relaxation Oscillations. Plenum, New York.

    MATH  Google Scholar 

  • Nagumo, J., Arimoto, S., Yoshizawa, S., 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.

    Article  Google Scholar 

  • Noble, D., 1962. A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352.

    Google Scholar 

  • Noble, D., Rudy, Y., 2001. Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. R. Soc. Lond. A 359, 1127–1142.

    Article  Google Scholar 

  • Rogers, J.M., 2000. Modeling the cardiac action potential using B-spline surfaces. IEEE Trans. BME 47(6), 784–791.

    Article  Google Scholar 

  • Rohr, S., Kucera, J.P., 1997. Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by Nifedipine and reversal by Bay K 8644. Biophys. J. 72, 754–766.

    Article  Google Scholar 

  • Romashko, D.N., Starmer, C.F., 1995. Numerical experiments in a modified Beeler–Reuter cable model—initiating fast (Na) and slow (Ca) waves. Chaos Solitons Fractals 5, 417–424.

    Article  MATH  Google Scholar 

  • Shiferaw, Y., Qu, Z., Garfinkel, A., Karma, A., Weiss, J.N., 2006. Nonlinear dynamics of paced cardiac cells. Ann. N.Y. Acad. Sci 1080, 376–394.

    Article  Google Scholar 

  • Simitev, R.D., Biktashev, V.N., 2006. Conditions for propagation and block of excitation in an asymptotic model of atrial tissue. Biophys. J. 90, 2258–2269.

    Article  Google Scholar 

  • Suckley, R., Biktashev, V., 2003. Comparison of asymptotics of heart and nerve excitability. Phys. Rev. E 68, 011902.

    Article  MathSciNet  Google Scholar 

  • ten Tuscher, K., Noble, D., Noble, P., Panfilov, A., 2004. A model for human ventricular tissue. Am. J. Physiol. 286, H1573–H1589.

    Google Scholar 

  • Tikhonov, A.N., 1952. Systems of differential equations, containing small parameters at the derivatives. Mat. Sbornik 31(3), 575–586.

    MathSciNet  Google Scholar 

  • Tyson, J.J., Keener, J.P., 1988. Singular perturbation theory of traveling waves in excitable media (a review). Physica D 32, 327–361.

    Article  MATH  MathSciNet  Google Scholar 

  • van Capelle, F.J., Durrer, D., 1980. Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47(3), 454–466.

    Google Scholar 

  • Weiss, J.N., Chen, P.-S., Qu, Z., Karagueuzian, H.S., Garfinkel, A., 2000. Ventricular fibrillation: how do we stop the waves from breaking? Circ. Res. 87, 1103–1107.

    Google Scholar 

  • Winslow, R.L., Scollan, D.F., Holmes, A., Yung, C.K., Zhang, J., Jafri, M.S., 2000. Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu. Rev. Biomed. Eng. 2, 119–155.

    Article  Google Scholar 

  • Zeeman, E.C., 1972. Differential Equations for the Heartbeat and Nerve Impulse. Mathematics Institute, University of Warwick, Coventry.

    Google Scholar 

  • Zipes, D.P., Wellens, H.J.J., 1998. Sudden cardiac death. Circulation 98, 2334–2351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Biktashev.

Additional information

Y.E. Elkin: Deceased 25/03/2007. Last affiliation: Institute of Mathematical Problems of Biology of the Russian Academy of Sciences, Pushchino, and the Pushchino branch of the Moscow State University, Russia.

R.D. Simitev: Current address: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biktashev, V.N., Suckley, R., Elkin, Y.E. et al. Asymptotic Analysis and Analytical Solutions of a Model of Cardiac Excitation. Bull. Math. Biol. 70, 517–554 (2008). https://doi.org/10.1007/s11538-007-9267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9267-0

Keywords

Navigation