Skip to main content
Log in

Bayesian Inference for Functional Response in a Stochastic Predator–Prey System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akçakaya, H.R., 2000. Viability analyses with habitat-based metapopulation model. Popul. Ecol. 42, 45–53.

    Article  Google Scholar 

  • Aït-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1), 223–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y., 2006. Likelihood inference for diffusion: a survey. In: Fan, J., Koul, H.L. (Eds.) Frontiers in Statistics: in Honor of Peter J. Bickel’s 65th Birthday. Imperial College Press.

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.O., Fearnhead, P., 2006. Exact an computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. Roy. Stat. Soc. Ser. B 68(3), 333–382.

    Article  MATH  MathSciNet  Google Scholar 

  • Bibby, B.M., Sørensen, M., 1995. Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1, 17–39.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonsall, M.B., Hastings, A., 2004. Demographic and environmental stochasticity in predator–prey metapopulation dynamics. J. Animal Ecol. 73, 1043–1055.

    Article  Google Scholar 

  • Buffoni, G., Gilioli, G., 2003. A lumped parameter model for acarine predator–prey population interactions. Ecol. Modell. 170, 155–171.

    Article  Google Scholar 

  • Carlin, B.P., Louis, T.A., 2000. Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall, London.

    MATH  Google Scholar 

  • Carpenter, S.R., Cottingham, K.L., Stow, C.A., 1994. Fitting predator–prey models to time series with observation errors. Ecology 75(5), 1254–1264.

    Article  Google Scholar 

  • Casas, J., Swarbrick, S., Murdoch, W.W., 2004. Parasitoid behavior: predicting flied from laboratory. Ecol. Entomol. 29, 657–665.

    Article  Google Scholar 

  • Chesson, P., 1978. Predator-prey theory and variability. Ann. Rev. Ecol. Syst. 9, 323–347.

    Article  Google Scholar 

  • Cowles, M.K., Carlin, B.P., 1996. Markov Chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904.

    Article  MATH  MathSciNet  Google Scholar 

  • Durham, G.B., Gallant, A.R., 2002. Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297–316.

    Article  MathSciNet  Google Scholar 

  • Elerian, O., Chib, S., Shephard, N., 2001. Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959–993.

    Article  MATH  MathSciNet  Google Scholar 

  • Eraker, B., 2001. MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19(2), 177–191.

    Article  MathSciNet  Google Scholar 

  • Eraker, B., 2002. Comment to ‘Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes’. J. Bus. Econ. Stat. 20(3), 327–329.

    Google Scholar 

  • Gilioli, G., Vacante, V., 2001. Aspetti della dinamica di popolazione del sistema Tetranychus urticae—Phytoseiulus persimilis in pieno campo: implicazioni per le strategie di lotta biologica. In: Atti del Convegno “La difesa delle colture in agricoltura biologica” Grugliasco–Torino, 5–6 Settembre 2001, Notiziario sulla protezione delle piante, 13 (nuova serie), pp. 95–99.

  • Gilioli, G., Baumgärtner, J., Vacante, V., 2005. Temperature influences on the functional response of Coenosia attenuata (Diptera Muscidae) individuals. J. Econ. Entomol. 98(5), 1524–1530.

    Google Scholar 

  • Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 1996. Markov Chain Monte Carlo in Practice. Chapman & Hall, London.

    MATH  Google Scholar 

  • Golightly, A., Wilkinson, D.J., 2005. Bayesian inference for stochastic kinetic models using a diffusion approximations. Biometrics 61(3), 781–788.

    Article  MATH  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.J., 2006. Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16(4), 323–338.

    Article  MathSciNet  Google Scholar 

  • Gutierrez, A.P., 1996. Applied Population Ecology. A Supply-Demand Approach. Wiley, New York.

    Google Scholar 

  • Helle, W., Sabelis, M.W., 1985. Spider Mites. Their Biology, Natural Enemies and Control. Elsevier, Amsterdam.

    Google Scholar 

  • Jost, C., Ellner, S.P., 2000. Testing for predator dependence in predator–prey dynamics: a non-parametric approach. Proc. Roy. Soc. Lond. B 267, 1611–1620.

    Article  Google Scholar 

  • Kareiva, P., 1982. Experimental and mathematical analysis of herbivore movement: quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monogr. 52(3), 261–282.

    Article  Google Scholar 

  • Kareiva, P., 1990. Population dynamics in spatially complex environments: theory and data. Philos. Trans. Roy. Soc. Lond. 330, 175–190.

    Article  Google Scholar 

  • Kessler, M., Parades, S., 2002. Computational aspects related to martingale estimating functions for a discretely observed diffusion. Scand. J. Stat. 29, 425–440.

    Article  MATH  Google Scholar 

  • Kessler, M., Sørensen, M., 1999. Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5(2), 299–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin.

    MATH  Google Scholar 

  • Knapp, M., Sarr, I., Baumgärtner, J., Gilioli, G., 2006. Temporal dynamics of tetranychus urticae populations in small-scale Kenyan farmers tomato fields. Exp. Appl. Acarol. 39, 195–212.

    Article  Google Scholar 

  • Liptser, R.S., Shiryayev, A.N., 1977. Statistics of Random Processes I—General Theory. Springer, New York.

    MATH  Google Scholar 

  • McCallum, H., 2000. Population Parameters. Estimation for Ecological Models. Blackwell, Oxford.

    Google Scholar 

  • Nachmann, G., 1996. Within- and between-system variability in an acarine predator–prey metapopulation. In: Di Cola, G., Gilioli, G. (Eds.) Computer Science and Mathematical Methods in Plant Protection. Quaderni del Dipartimento di Matematica, Università di Parma, n. 135, pp. 110–132.

  • Øksendal, B., 1998. Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin.

    MATH  Google Scholar 

  • Pascual, M.A., Kareiva, K., 1996. Predicting the outcome of competition using experimental data: maximum likelihood and Bayesian approaches. Ecology 77(2), 337–349.

    Article  Google Scholar 

  • Pedersen, A.R., 1995a. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22, 55–71.

    MATH  Google Scholar 

  • Pedersen, A.R., 1995b. Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1, 257–279.

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa Rao, B.L.S., 1999. Statistical Inference for Diffusion Type Processes. Arnold, London.

    MATH  Google Scholar 

  • Rand, D., Wilson, H.B., 1991. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics. Proc. Roy. Soc. Lond. B 246, 179–184.

    Article  Google Scholar 

  • Regan, H.M., Colyvan, M., Burgman, M.A., 2002. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12(2), 618–628.

    Article  Google Scholar 

  • Royama, T., 1971. A comparative study of models for predation and parasitism. Res. Popul. Ecol. Suppl. 1, 1–91.

    Article  Google Scholar 

  • Sabelis, M.W., 1981. Biological Control of Two Spotted Spider Mites Using Phytoseiid Predators. Part I. Modelling the Predator-Prey Interaction at the Individual Level. Pudoc, Wageningen.

    Google Scholar 

  • Shaffer, G., 1981. Minimum population size for species conservation. Bioscience 31, 131–134.

    Article  Google Scholar 

  • Shaffer, G., 1987. Minimum viable populations: coping with uncertainty. In: Soulé, M.E. (Ed.), Viable Populations for Conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Sørensen, M., 1999. On asymptotics of estimating functions. Braz. J. Probab. Stat. 13, 111–136.

    MATH  MathSciNet  Google Scholar 

  • Sørensen, H., 2004. Parametric inference for diffusion processes observed at discrete points in time: a survey. Int. Stat. Rev. 72(3), 337–354.

    Article  Google Scholar 

  • Stramer, O., Yan, J., 2007. On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation. J. Comput. Graph. Stat., to appear.

  • Tanner, M.A., Wong, W.H., 1987. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–541.

    Article  MATH  MathSciNet  Google Scholar 

  • Turchin, P., 2003. Complex Population Dynamics. A Theoretical/Empirical Synthesis. Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Xia, J.Y., Rabbinge, R., van der Werf, W., 2003. Multistage functional responses in a ladybeetle-aphid system: scaling up from the laboratory to the field. Environ. Entomol. 32(1), 151–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Pasquali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilioli, G., Pasquali, S. & Ruggeri, F. Bayesian Inference for Functional Response in a Stochastic Predator–Prey System. Bull. Math. Biol. 70, 358–381 (2008). https://doi.org/10.1007/s11538-007-9256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9256-3

Keywords

Navigation