Skip to main content
Log in

Population models for threshold-based control of Tetranychus urticae in small-scale Kenyan tomato fields and for evaluating weather and host plant species effects

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

The spatial distribution of motile life stages of the two-spotted spider mite Tetranychus urticae Koch in Kenyan small-scale tomato fields was described by Taylor’s power law and an enumerative sampling plan was designed for research purposes. The exponential increase of T. urticae populations during three growing seasons permits the development and use of a simple exponential model for the design of a threshold-based chemical control system. For this purpose, a critical threshold of 440 motile mites per sample unit at the end of the growing season (12 weeks after transplanting) was translated into a proportion of 0.83 infested units in sample 3, i.e. five weeks after transplanting. A sequential binomial sampling plan with respect to the proportion of 0.83, five weeks after transplanting, was designed. The exponential model was extended to account for the influence of weather and host plant species. Model development and parameter estimation were based on three data sets (Kenyan tomato fields, Italian and Californian strawberry fields). The model satisfactorily predicted a positive influence on growth rates by (i) changing the host plant from tomato to strawberry, and (ii) temperature, while a negative effect resulted from (iii) rainfall; both (ii) and (iii) are controlled by temperature–rainfall interactions. In contrast, the estimated parameter values did not satisfactorily describe the expected responses at specific temperature and rainfall values. Nevertheless, the model allowed the rating of host plant species in the field. A fourth data set from Swiss apple orchards was used to test the model, and population build-up on the apple host plant appeared to be higher than on tomatoes but lower than on strawberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Shaheed GA, Abdel-Salam AM, Assem MA (1971) Experimental studies on tomato pests. II. Effects of mites on tomato yield and fruit quality. J Appl Entomol 69:402–406

    Google Scholar 

  • Baumgärtner J, Gutierrez AP, Klay A (1988) Elements of modelling the dynamics of tritrophic population interactions. Exp Appl Acarol 5:243–263

    Article  Google Scholar 

  • Baumgärtner J, Gilioli G, Schneider D, Severini M (2002) The management of populations in hierarchically organized systems. Notiz Prot Piante 15:247–263

    Google Scholar 

  • Baumgärtner J, Schulthess F, Xia YL (2003) Integrated arthropod pest management systems for human health improvement in Africa. Insect Sci Appl 23:85–98

    Google Scholar 

  • Bezert J (1999) Tetranychus urticae on processing tomatoes. How to reason cultural practices? Acta Hort 487:257–261

    Google Scholar 

  • Bianchi G, Baumgärtner J, Delucchi V, Rahalivavololona N, Skillman S, Zahner P (1989) Sampling egg batches of Maliarpha separatella Rag. (Lep. Pyralidae) in Madagascan rice fields. Trop Pest Manage 35:420–424

    Article  Google Scholar 

  • Buffoni G, Gilioli G (2003) A lumped parameter model for acarine predator-prey population interactions. Ecol Model 170:155–171

    Article  Google Scholar 

  • Castagnoli M, Caccia R, Liguori M, Simoni S, Marinari S, Soressi GP (2003) Tomato transgenic lines and Tetranychus urticae: changes in plant suitability and susceptibility. Exp Appl Acarol 31:177–189

    Article  PubMed  CAS  Google Scholar 

  • Daiber KC (1996) Injurious insects, spider mites and nematodes on tomatoes in southern Africa. Z Pflkrankh Pflschutz 103:94–110

    Google Scholar 

  • Ferro DN, Chapman RB, Penman DR (1979) Observations on insect microclimate and insect pest management. Environ Entomol 8:1000–1003

    Google Scholar 

  • Gaede K (1992) On the water balance of Phytoseiulus persimilis and its significance. Exp Appl Acarol 15:181–198

    Article  Google Scholar 

  • Gilioli G, Vacante V (2001) Aspetti della dinamica di popolazione del sistema Tetranychus urticaePhytoseiulus persimilis in pieno campo: implicazioni per le strategie di lotta biologica. Notiz Prot Piante 13:95–99

    Google Scholar 

  • Gutierrez J (1976) Etude biologique et écologique de Tetranychus neocaledonicus André (Acarien, Tetranychidae). Travaux et Documents de l’ORSTOM. ORSTOM, Paris

  • Gutierrez AP (1996) Population ecology. A supply-demand approach. Wiley, New York

    Google Scholar 

  • Helle W, Sabelis MW (eds) (1985) Spider mites, their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  • Herbert HJ (1981) Biology, life tables, and innate capacity for increase of the twospotted spider mite, Tetranychus urticae (Acarina, Tetranychidae). Can Entomol 113:371–378

    Article  Google Scholar 

  • Hussey NW, Scopes NEA (1985) Greenhouse vegetables (Britain). In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 285–297

    Google Scholar 

  • Jensen A, Mingochi DS (1988) Chemical control of red spider mite (Tetranychus urticae Koch) on tomatoes in Zambia. Acta Hort 218:275–280

    Google Scholar 

  • Jones VP (1990) Developing sampling plans for spider mites (Acari: Tetranychidae): those who don’t remember the past may have to repeat it. J Econ Entomol 83:1656–1664

    Google Scholar 

  • Kapatos ET, Stratopoulou ET (1990) Population dynamics of Saissetia oleae. II. Life-tables and key-factor analysis. Entomol Hell 8:59–64

    Google Scholar 

  • Karandinos MG (1976) Optimum sample size and comments on some published formulae. Bull Entomol Soc Am 22:417–421

    Google Scholar 

  • Kielkiewicz M (1996) Dispersal of Tetranychus cinnabarinus on various tomato cultivars. Entomol Exp Appl 80:254–257

    Article  Google Scholar 

  • Klubertanz TH, Pedigo LP, Carlson RE (1990) Effects of plant moisture stress and rainfall on population dynamics of the twospotted spider mite (Acari: Tetranychidae). Environ Entomol 19:1773–1779

    Google Scholar 

  • Kogan M, Croft BA, Sutherst RF (1999) Applications of ecology for integrated pest management. In: Huffacker CB, Gutierrez AP (eds) Ecological entomology, 2nd edn. Wiley, New York, pp 681–736

    Google Scholar 

  • Laing JE (1969) Life history and life table of Tetranychus urticae Koch. Acarologia 11:32–42

    PubMed  CAS  Google Scholar 

  • Marsden DA, Allen WW (1980) Evaluation of two selective acaricides on strawberries for control of the twospotted spider mite and their effect on the predatory mite, Metaseiulus occidentalis. J Econ Entomol 73:168–171

    CAS  Google Scholar 

  • Nachman G (1984) Estimates of mean population density and spatial distribution of Tetranychus urticae (Acarina: Tetranychidae) and Phytoseiulus persimilis (Acarina: Phytoseiidae) based upon the proportion of empty sampling units. J Appl Ecol 21:903–913

    Article  Google Scholar 

  • Nihoul P (1993a) Spatial distribution of spider mites and predatory mites on the plant related to biological control effectiveness on glasshouse tomatoes. Med Fac Landbouww Univ Gent 58:497–505

    Google Scholar 

  • Nihoul P (1993b) Do light intensity, temperature and photoperiod affect the entrapment of mites on glandular hairs of cultivated tomatoes? Exp Appl Acarol 17:709–718

    Article  Google Scholar 

  • Nihoul P, van Impe G, Hance T (1991) Characterizing indices of damage to tomato by the two-spotted spider mite Tetranychus urticae Koch (Acari; Tetranychidae) to achieve biological control. J Hort Sci 66:643–648

    Google Scholar 

  • Nyrop JP, Agnello AM, Kovach J, Reissig WH (1989) Binomial sequential classification sampling plans for European red mite (Acari: Tetranychidae) with special reference to performance criteria. J Econ Entomol 82:482–490

    Google Scholar 

  • Opit GP, Margolies DC, Nechols JR (2003) Within-plant distribution of twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) on ivy geranium: Development of a presence-absence sampling plan. J Econ Entomol 96:482–488

    Article  PubMed  CAS  Google Scholar 

  • Pickel C, Mount RC, Zalom FG, Wilson LT (1983) Monitoring aphids on Brussels sprouts. Calif Agric 37:24–25

    Google Scholar 

  • Pringle KL, Drayton AW, Northcraft PPD (1994) Development biology of the carmine and green forms of Tetranychus urticae Koch (Acarina: Tetranychidae). Afr Entomol 2:127–132

    Google Scholar 

  • Rabbinge R, Rijsdijk FH (1983) EPIPRE: a disease and pest management system for winter wheat, taking account of micrometeorological factors. EPPO Bull 13:297–305

    Article  Google Scholar 

  • Roux O, Baumgärtner J (1998) Evaluation of mortality factors and risk analysis for the design of an integrated pest management system. Ecol Model 109:61–75

    Article  Google Scholar 

  • Sarr I (2003) Bioecology and population dynamics of spider mites (Acari: Tetranychidae on tomato in small scale production systems in Kenya. PhD thesis, Kenyatta University, Nairobi, Kenya

  • Sarr I, Knapp M, Ogol CPKO, Baumgärtner J (2002) Predatory effects on spider mite populations and their damage on tomatoes. In: Tenywa JS, Nampala MP, Kyamanywa S, Osiru M (eds) Integrated pest management conference proceedings, Kampala, pp 1–9

  • Sibanda T, Dobson HM, Cooper JF, Manyangarirwa W, Chiimba W (2000) Pest management challenges for smallholder vegetable farmers in Zimbabwe. Crop Prot 19:807–815

    Article  Google Scholar 

  • Simpson KW, Connell WA (1973) Mites on soybeans: moisture and temperature relations. Environ Entomol 2:319–323

    Google Scholar 

  • Sithanantham S, Abera TH, Baumgärtner J, Hassan SA, Löhr B, Monje JC, Overholt WA, Paul AVN, Hao Wan F, Zebitz CPW (2001) Egg parasitoids for augmentive biological control of lepidopteran vegetable pests in Africa: research status and needs. Insect Sci Appl 21:189–205

    Google Scholar 

  • Skovgård H, Tomkiewicz J, Nachman G, Münster-Swendsen M (1993) The dynamics of the cassava green mite Mononychellus tanajoa in a seasonally dry area in Kenya. Exp Appl Acarol 17:59–76

    Google Scholar 

  • Stacey DL, Wyatt IJ, Chambers RJ (1985) The effect of glasshouse red spider mite on the yield of tomatoes. J Hort Sci 60:517–523

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:731–735

    Google Scholar 

  • Van de Vrie M, McMurtry JA, Huffacker CB (1972) Ecology of tetranychid mites and their natural enemies: a review. III. Biology, ecology, and pest status, and host-plant relations of tetranychids. Hilgardia 41:343–432

    Google Scholar 

  • Van Impe G, Hance T (1993). Une technique d’évaluation de la sensibilité variétale au tétranychidae tisserand, Tetranychus urticae Koch (Acari: Tetranychidae). Application au haricot, au concombre, à la tomate et au fraisier. Agronomie 13:739–749

    Article  Google Scholar 

  • Varela AM, Seif A, Löhr B (2003) A guide to IPM in tomato production in Eastern and Southern Africa. ICIPE Science Press, Nairobi

    Google Scholar 

  • Wermelinger B, Baumgärtner J, Zahner P, Delucchi V (1990) Environmental factors affecting life tables of Tetranychus urticae Koch (Acarina). I. Temperature. Mitt Schweiz Ent Ges 63:55–62

    Google Scholar 

  • Wermelinger B, Candolfi MP, Baumgärtner J (1992) A model of the European red mite (Acari, Tetranychidae) population dynamics and its linkage to grapevine growth and development. J Appl Entomol 114:155–166

    Article  Google Scholar 

  • Wilson LJ, Morton R (1993) Seasonal abundance and distribution of Tetranychus urticae Koch (Acari: Tetranychidae), the two-spotted spider mite, on cotton in Australia and implications for management. Bull Entomol Res 83:291–303

    Article  Google Scholar 

  • Wilson LT, Pickel C, Mount RC, Zalom FG (1993) Presence-absence sequential sampling for cabbage aphid and green peach aphid (Homoptera: Aphididae) on Brussels sprouts. J Econ Entomol 76:476–479

    Google Scholar 

  • Witul A, Kielkiewicz M (1999) Life-history parameters of two closely related forms of the Tetranychus urticae-complex on different host plants. In: Bruin J, van der Geest LPS, Sabelis MW (eds) Ecology and evolution of the Acari. Kluwer, Dorderecht, pp 399–404

    Google Scholar 

  • Yaninek JS, Herren HR, Gutierrez AP (1989) Dynamics of Mononychellus tanajoa (Acari: Tetranychidae) in Africa: seasonal factors affecting phenology and abundance. Environ Entomol 18:625–632

    Google Scholar 

  • Zahner P, Baumgärtner J (1984) Sampling statistics for Panonychus ulmi Koch (Acarina: Tetranychidae) and Tetranychus urticae Koch (Acarina: Tetranychidae) feeding on apple trees. Res Popul Ecol 26:97–112

    Article  Google Scholar 

  • Zahner P, Baumgärtner J (1988) Analyse des interactions plante-tétranyques-phytoséiides. I. Modèles de population pour la dynamique de Panonychus ulmi et Tetranychus urticae en vergers de pommier. Acta Oecol Oecol Appl 9:311–331

    Google Scholar 

Download references

Acknowledgements

Prof. V. Vacante, University of Reggio di Calabria, Italy, kindly made available data on T. urticae fluctuations in Italian strawberry fields and provided the weather data for the period under study. Prof. A.P. Gutierrez, University of California, Berkeley, USA, made available the San Jose weather data from the California System Wide IPM Project. The Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland, provided the weather data for Sion. This study was funded by a grant of the German Federal Ministry of Economic Cooperation and Development (BMZ) to ICIPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Knapp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, M., Sarr, I., Gilioli, G. et al. Population models for threshold-based control of Tetranychus urticae in small-scale Kenyan tomato fields and for evaluating weather and host plant species effects. Exp Appl Acarol 39, 195–212 (2006). https://doi.org/10.1007/s10493-006-9018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-006-9018-1

Keywords

Navigation