Skip to main content

Advertisement

Log in

Mathematical Simulation of Membrane Processes and Metabolic Fluxes of the Pancreatic β-cell

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A new type of equation to describe enzyme-catalyzed reactions was developed, which allows the description of processes both at or near equilibrium and far from equilibrium, as they are both known to occur in the living cell. These equations combine kinetic as well as energetic characteristics within one single equation, and they describe the steady state as well as oscillations, as is shown for the glucose metabolism of the pancreatic β-cell. A simulation of oxidative glucose metabolism could be elaborated, which allows to analyse in detail, how membrane and metabolic oscillations of the pancreatic β-cell are generated, and how they are kinetically coupled. Glucose metabolism shows steady-state behaviour at a resting glucose concentration ([Glu]) of 4 mM. The steady state is switched to the oscillatory state by a first increase of the conductance of the glucokinase-catalyzed reaction at an elevated [Glu] of 10 mM. This is in fact sufficient to decrease the cytosolic adenosine diphosphate concentration ([ADP]c) at constant intracellular [Ca2+]. The associated changes of the ATP and ADP species can reduce the conductance of ATP-sensitive K+ channels (KATP), thereby initiating bursts of the cell membrane potential (Δcφ) with a concomitant influx of Ca2+ ions from the extracellular space into the cell. The production of oscillations of [ADP]c, [Ca2+]c, and all other variables, including those of mitochondria, are brought about on the one hand by a [Ca2+]m dependent activation of mitochondrial ATP production, on the other hand by a [Ca2+]c-dependent activation of ATP utilisation in the cytosol. Both processes must be coordinated in such a way that ATP production slightly precedes its utilisation. Oscillatory frequencies (fast/slow) are determined by the conductance (high/low, respectively) of flux through pyruvate dehydrogenase and/or citric acid cycle. The simulation shows that the so-called pyruvate paradox possibly results from a relatively low membrane conductance of β-cells for pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberty, R.A., 2003. Thermodynamics of Biochemical Reactions. Wiley-Interscience, New York.

    Book  Google Scholar 

  • Ashcroft, F.M., Gribble, F.M., 1999. ATP-sensitive K+ channels and insulin secretion: Their role in health and disease. Diabetologia 42, 903–919.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft, F.M., Harrison, D.E., Ashcroft, S.J.H., 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312, 446–448.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Atwater, I., Dawson, C.M., Scott, A., Eddlestone, G., Rojas, E., 1980. The nature of the oscillatory behaviour in electrical activity for pancreatic β-cell. In: Biochemistry and Biophysics of the Pancreatic β-cell. Georg Thieme Verlag, New York, pp. 100–107.

  • Atwater, I., Goncalves, A., Herchuelz, A., Lebrun, P., Malaisse, W.J., Rojas, E., Scott, A., 1984. Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets. J. Physiol. 348, 615–627.

    PubMed  CAS  Google Scholar 

  • Bertram, R., Satin, L., Zhang, M., Smolen, P., Sherman, A., 2004. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–3087.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bertram, R., Sherman, A., 2004. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol. 66, 1313–1344.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Bertram, R., Smolen, P., Sherman, A., Mears, D., Atwater, I., Martin, F., 1995. A role for calcium release—activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic β-cells. Biophys. J. 68, 2323–2332.

    PubMed  CAS  ADS  Google Scholar 

  • Caplan, S.R., Essig, A., 1983. Bioenergetics and linear nonequilibrium thermodynamics the steady state. Harvard University Press, Cambridge, Massachusetts, and London, England.

  • Chay, T.R., 1996. Electrical bursting and luminal calcium oscillation in excitable cell models. Biol. Cybernet. 75, 419–431.

    Article  CAS  MATH  Google Scholar 

  • Chay, T.R., 1997. Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium oscillations in insulin secreting pancreatic β-cells. Biophys. J. 73, 1673–1688.

    PubMed  CAS  ADS  Google Scholar 

  • Chay, T.R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–190.

    PubMed  CAS  Google Scholar 

  • Chou, H-F, Berman, N., 1992. Oscillations of the lactate released from the islets of Langerhans: evidence for oscillatory glycolysis in beta-cells. Am. J. Physiol. 262, E800–E805.

    PubMed  CAS  Google Scholar 

  • Cook, D.L., Ikeuchi, M., 1989. Tolbutamide as mimic of glucose on β-cell electrical activity. ATP-sensitive K+ channels as common pathway for both stimuli. Diabetes 38, 416–421.

    PubMed  CAS  Google Scholar 

  • Cunningham, B.A., Deeney, J.T., Bliss, C.R., Corkey, B.E., Tornheim, K., 1996. Glucose-induced oscillatory insulin secretion in perifused rat pancreatic islets and clonal β-cells (HIT). Am. J. Physiol. 271(Endocrinol. Metab. 34), E702–E710.

    Google Scholar 

  • Dahlgren, G.M., Kauri, L.M., Kennedy, R.T., 2005. Substrate effects on oscillations in metabolism, calcium and secretion in single mouse islets of Langerhans. Biochim. Biophys. Acta. 724, 23–36.

    Google Scholar 

  • Detimary, P., Gilon, P., Henquin, J.-C., 1998. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: A feedback control mechanism in mouse pancreatic islets. Biochem. J. 333, 269–274.

    PubMed  CAS  Google Scholar 

  • Dufer, M., Krippeit-Drews, P., Buntinas, L., Siemen, D., Drews, G., 2002. Methyl pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and not as a mitochondrial substrate. Biochem. J. 368, 817–825.

    Article  PubMed  Google Scholar 

  • Erecińska, M., Brył a, J., Michalik, M., Meglasson, M.D., Nelson, D., 1992. Energy metabolism in islets of Langerhans. Biochem. Biophys. Acta. 1101, 273–295.

    Article  PubMed  Google Scholar 

  • Fridlyand, L.E., Tamarina, N., Philipson, L.H., 2003. Modeling of Ca2+ flux in pancreatic β-cells: Role of the plasma membrane and intracellular stores. Am. J. Physiol. Endocrinol. Metab. 285, E138–E154.

    PubMed  CAS  Google Scholar 

  • Gilon, P., Ravier, M.A., Jonas, J.C., Henquin, J-C., 2002. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51(Suppl. 1), S144–S155.

    Google Scholar 

  • Goldbeter, A (1997). Biochemical oscillations and cellular rhythms, first paperback edition, Cambridge University Press, Cambridge.

  • Hess, B., Boiteux, A., 1971. Oscillatory phenomena in biochemistry. Annu. Rev. Biochem. 40, 237–258.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A.V., 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii.

  • Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    CAS  Google Scholar 

  • Hopkins, W.F., Fatherazi, S., Peter-Riesch, B., Corkey, B.E., Cook, D.L., 1992. Two sites for adenine—nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic β-cells and HIT cells. J. Membrane Biol. 129, 287–295.

    Article  CAS  Google Scholar 

  • Jung, S.-K., Kauri, L. M., Qian, W.-J., Kenndy, R.T., 2000. Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca2+ in single islets of Langerhans. J. Biol. Chem. 275, 6642–6650.

    Article  PubMed  CAS  Google Scholar 

  • Katchalsky, A., Curran, P.F., 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA.

  • Kennedy, R.T., Kauri, L.M., Dahlgren, G.M., Jung, S.-K., 2002. Metabolic oscillations in β-cells. Diabetes 51(Suppl. 1), S152–S161.

    Google Scholar 

  • Kjems, L.L., Ravier, M.A., Jonas, J.C., Henquin, J.-C., 2002. Do oscillations of insulin secretion occur in the absence of Ca2+ oscillations in beta-cells? Diabetes 51(Suppl. 1), S177–S182.

  • Krippeit-Drews, P., Düfer, M., Drews, G., 2000. Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic β-cells. Biochem. Biophys. Res. Commun. 267, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, O., Kindmark, H., Bränström, R., Fredholm, B., Berggren, P.-O., 1996. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic β-cell. Proc. Natl. Acad. Sci. U.S.A. 93(Cell Biol.), 5161–5165.

  • Lenzen, S., Lerch, M., Peckmann, T., Tiedge, M., 2000. Differential regulation of [Ca2+]i oscillations in mouse pancreatic islets by glucose, α-ketoisocaproic acid, glyceraldehyd and glycolytic intermediates. Biochim. Biophys. Acta 1523, 65–72.

    PubMed  CAS  Google Scholar 

  • Magnus, G., Keizer, J., 1998a. Model of β-cell Ca2+ handling and electrical activity. I. Cytoplasmic variables. Am. J. Physiol. 274(Cell Physiol. 43), C1158–C1173.

    Google Scholar 

  • Magnus, G., Keizer, J., 1998b. Model of β-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. Am. J. Physiol. 274(Cell Physiol. 43), C1174–C1184.

    Google Scholar 

  • Malaisse-Lagae, F., Mathias, P.C., Malaisse, W. J., 1984. Gating and blocking of calcium channels by dihydropyridines in the pancreatic B-cell. Biochem. Biophys. Res. Commun. 123, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky, F.M., 1996. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45, 223–241.

    PubMed  CAS  Google Scholar 

  • Meglasson, M.D., Matschinsky, F.M., 1986. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. Rev. 2, 163–214.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, H.P., Atwater, I.J., 1976. The kinetics of electrical activity of beta cells in response to a square wave stimulation with glucose or glibenclamide. Horm. Metab. Res. 8, 11–16.

    PubMed  CAS  Google Scholar 

  • Meissner, H.P., Schmeer, W., 1981. The significance of calcium ions for the glucose-induced electrical activity of pancreatic β-cells. In: Ohnishi, S.T., Endo, M., (Eds.), The Mechanism of Gated Calcium Transport Across Biological Membranes. Academic Press, New York, pp. 157–165.

  • Mertz, R.J., Worley, J.F. III, Spencer, B., Johnson, J.H., Dukes, I.D., 1996. Activation of stimulus—secretion coupling in pancreatic β-cells by specific products of glucose metabolism. J. Biol. Chem. 271, 4838–4845.

    Article  PubMed  CAS  Google Scholar 

  • Misler, S., Falke, L.C., Gillis, K., McDaniel, M.L., 1986. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc. Natl. Acad. Sci. U.S.A. 83, 7119–7123.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Neher, E., 1995. The use of Fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34, 1423–1442.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D.G., Ferguson, S.J., 2002. Bioenergetics, vol. 3. Academic Press, New York.

  • Nilsson, T., Schultz, V., Berggren, P.-O., Corkey, B.E., Tornheim, K., 1996. Temporal patterns of changes of ATP/ADP ratio, glucose-6-phosphate, and cytoplasmic free Ca2+ in glucose-stimulated pancreatic β-cells. Biochem. J. 314, 91–94.

    PubMed  CAS  Google Scholar 

  • Pietrobon, D., Caplan, S.R., 1989. Use of nonequilibrium thermodynamics in the analysis of transport: General flow—force relationship and the linear domain. Meth. Enzymol 171, 397–444.

    Article  PubMed  CAS  Google Scholar 

  • Poole, R.C., Halestrap, A.P., 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264 (Cell Physiol. 33), C761–C782.

    Google Scholar 

  • Rinzel, J., 1985. Bursting oscillations in an excitable membrane model. In Sleeman, B.D., Jarvis, R.J., (Eds.), Ordinary and Partial Differential Equations, Springer-Verlag, New York, pp. 304–316.

  • Roe, M.W., Lancaster, M.E., Mertz, R.J., Worley, J.F., III, Dukes, I.D., 1993. Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose. J. Biol. Chem. 268, 9953–9956.

    PubMed  CAS  Google Scholar 

  • Rolfe, D.F.S., Brown, G.C., 1997. Cellular energy utilisation and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758.

    PubMed  CAS  Google Scholar 

  • Rolland, J.-F., Henquin, J.-C., Gilon, P., 2002. Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic β-cells. Diabetes 51, 376–384.

    PubMed  CAS  Google Scholar 

  • Schuit, F., De Vos, A., Farfari, S., Moens, K., Pipeleers, D., Brun, T., Prentki, M., 1997. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β-cells. J. Biol. Chem. 272, 18572–18579.

    Article  PubMed  CAS  Google Scholar 

  • Sener, A., Kawazu, S., Hutton, J.C., Boschero, A.C., Devis, G., Somers, G., Herchuelz, A., Malaisse, W.J., 1978. The stimulus—secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem. J. 176, 217–232.

    PubMed  CAS  Google Scholar 

  • Sherman, A., 1996. Contributions to understanding stimulus—secretion coupling in pancreatic β-cells. Am. J. Physiol. 271, E362–E372.

    PubMed  CAS  Google Scholar 

  • Smolen, P., 1995. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase. J. Theor. Biol. 174, 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, C.L., Rinzel, J., 1993. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys. J. 65, 597–607.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tornheim, K., 1988. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 263, 2619–2624.

    PubMed  CAS  Google Scholar 

  • Tornheim, K., 1997. Perspectives in diabetes. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46, 1375–1380.

    PubMed  CAS  Google Scholar 

  • Worley, J.F. III, McIntyre, M.S., Spencer, B., Mertz, R.J., Roe, M.W., Dukes, I.D., 1994. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet β-cells. J. Biol. Chem. 269, 32055–32058.

    PubMed  CAS  Google Scholar 

  • Yanney, G.C., Schultz, V., Cunningham, B.A., Dunaway, G.A., Corkey, B.E., 1995. Phosphofructokinase Isozymes in pancreatic islets and clonal β-cells (INS–1). Diabetes 44, 1285–1289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Diederichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diederichs, F. Mathematical Simulation of Membrane Processes and Metabolic Fluxes of the Pancreatic β-cell. Bull. Math. Biol. 68, 1779–1818 (2006). https://doi.org/10.1007/s11538-005-9053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9053-9

Keywords

Navigation