Skip to main content
Log in

Framework Models of Ion Permeation Through Membrane Channels and the Generalized King–Altman Method

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A modern approach to studying the detailed dynamics of biomolecules is to simulate them on computers. Framework models have been developed to incorporate information from these simulations in order to calculate properties of the biomolecules on much longer time scales than can be achieved by the simulations. They also provide a simple way to think about the simulated dynamics. This article develops a method for the solution of framework models, which generalizes the King–Altman method of enzyme kinetics. The generalized method is used to construct solutions of two framework models which have been introduced previously, the single-particle and Grotthuss (proton conduction) models. The solution of the Grotthuss model is greatly simplified in comparison with direct integration. In addition, a new framework model is introduced, generalizing the shaking stack model of ion conduction through the potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon, N., 1995. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462.

    Article  CAS  ADS  Google Scholar 

  • Agmon, N., Hopfield, J.J., 1983. Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys. 78(11), 6947–6959.

    Article  CAS  ADS  Google Scholar 

  • Allen, T.W., Chung, S.H., 2001. Brownian dynamics study of an open-state KcsA potassium channel. Biochim. Biophys. Acta 1515, 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Apaydin, M.S., Brutlag, D.L., Guestrin, C., Hsu, D., Latombe, J.-C., 2003. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. J. Comput. Biol. 10, 257–281.

    Article  PubMed  CAS  Google Scholar 

  • Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., Lomize, A.L., Ovchinnikov, Y.A., 1985. 1H-NMR study of gramicidin A transmembrane ion channel. Head-to-head right-handed, single-stranded helices. FEBS Lett. 186, 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Berne, B.J., Pecora, R., 1976. Dynamic Light Scattering. Wiley, New York.

  • Bernèche, S., Roux, B., 2001. Energetics of ion conduction through the K+ channel. Nature 414, 73–76.

    Article  PubMed  ADS  Google Scholar 

  • Bernèche, S., Roux, B., 2003. A microscopic view of conduction through the streptomyces lividans K+ channel. Proc. Natl. Acad. Sci. U.S.A. 100, 8644–8648.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chen, D., Lear, J., Eisenberg, B., 1997. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys. J. 72, 97–116.

    PubMed  CAS  Google Scholar 

  • Chiu, S.W., Novotny, J.A., Jakobsson, E., 1993. The nature of ion and water barrier crossings in a simulated ion channel. Biophys. J. 64, 98–109.

    PubMed  CAS  Google Scholar 

  • Cohen, J., Schulten, K., 2004. Mechanism of anionic conduction across ClC. Biophys. J. 86, 836–845.

    PubMed  CAS  Google Scholar 

  • Crouzy, S., Woolf, T.B., Roux, B., 1994. A molecular dynamics study of gating in dioxolane-linked gramicidin a channels. Biophys. J. 67, 1370–1386.

    PubMed  CAS  Google Scholar 

  • Eisenman, G., Enos, B., Hagglund, J., Sandbloom, J., 1980. Gramicidin as an example of a single-filing ionic channel. Ann. N.Y. Acad. Sci. 339, 8–20.

    PubMed  CAS  ADS  Google Scholar 

  • Finkelstein, A., Andersen, O.S., 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. J. Membr. Biol. 59, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Gowen, J.A., Markham, J.C., Morrison, S.E., Cross, T.A., Busath, D.D., Mapes, E.J., Schumaker, M.F., 2002. The role of Trp side chains in tuning single proton conduction through gramicidin channels. Biophys. J. 83, 880–898.

    PubMed  Google Scholar 

  • Grote, R.F., Hynes, J.T., 1980. The stable states picture of chemical reactions II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys. 73, 2715–2732.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Heckmann, K., Vollmerhaus, W., 1970. Zur theorie der ``single-file'' diffusion. Z. Physik 71, 320–328.

    CAS  Google Scholar 

  • Hill, T.L., 1977. Free Energy Transduction in Biology. Academic, New York.

  • Hille, B., 1992. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA.

  • Ketcham, R.R., Roux, B.B., Cross, T.A., 1997. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669.

    Article  Google Scholar 

  • King, E.L., Altman, C., 1956. A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 60, 1375–1378.

    Article  CAS  Google Scholar 

  • Kramers, H.A., 1940. Brownian motion in a field of force. Physica 7, 284–304.

    Article  CAS  MATH  MathSciNet  ADS  Google Scholar 

  • Läuger, P., 1973. Ion transport through pores, a rate-theory analysis. Biochim. Biophys. Acta 311, 423–441.

    Article  PubMed  Google Scholar 

  • Levitt, D.G., 1986. Interpretation of biological ion channel flux data: Reaction rate versus continuum theory. Ann. Rev. Biophys. Biophys. Chem. 15, 29–57.

    Article  CAS  Google Scholar 

  • Mapes, E., Schumaker, M.F., 2001. Mean first passage times across a potential barrier in the lumped state approximation. J. Chem. Phys. 114, 76–83.

    Article  CAS  ADS  Google Scholar 

  • Mashl, R.J., Tang, Y., Schnitzer, J., Jakobsson, E., 2001. Hierarchical approach to predicting permeation in ion channels. Biophys. J. 81, 2473–2483.

    PubMed  CAS  Google Scholar 

  • McGill, P., Schumaker, M.F., 1996. Boundary conditions for single-ion diffusion. Biophys. J. 71, 1723–1742.

    PubMed  CAS  Google Scholar 

  • Morais-Cabral, J.H., Zhou, Y., MacKinnon, R., 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Mori, H., 1965. Transport, collective motion and Brownian motion. Prog. Theor. Phys. 33, 423–455.

    Article  MATH  ADS  Google Scholar 

  • Nadler, B., Naeh, T., Schuss, Z., 2001. The stationary arrival process of independent diffusers from a continuum to an absorbing boundary is poissonian. SIAM J. Appl. Math. 62(2), 433–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson, P.H., 2002. A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis– Menten behavior. J. Chem. Phys. 117(24), 11396–11403.

    Article  CAS  ADS  Google Scholar 

  • Nelson, P.H., 2003. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel. Phys. Rev. E 68(061908).

  • Pomès, R., Roux, B., 1996. Structure and dynamics of a proton wire: A theoretical study of H+ translocation along the single-file water chain in the gramicidin a channel. Biophys. J. 71, 19–39.

    PubMed  Google Scholar 

  • Pomès, R., Roux, B., 2002. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J. 82, 2304–2316.

    Article  PubMed  Google Scholar 

  • Roux, B., 2002. Theoretical and computational models of ion channels. Curr. Opin. Struct. Biol. 12, 182–189.

    Article  PubMed  CAS  Google Scholar 

  • Roux, B., Allen, T., Bernèche, S., Im, W., 2004. Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15–103.

    Article  CAS  PubMed  Google Scholar 

  • Roux, B., Karplus, M., 1993. Ion transport in the gramicidin channel: Free energy of the solvated right-hand dimer in a model membrane. J. Am. Chem. Soc. 115, 3250–3262.

    Article  CAS  Google Scholar 

  • Schumaker, M.F., 1992. Shaking stack model of ion conduction through the Ca2-activated K+ channel. Biophys. J. 63, 1032–1044.

    PubMed  CAS  Google Scholar 

  • Schumaker, M.F., 2002. Boundary conditions and trajectories of diffusion processes. J. Chem. Phys. 116(6), 2469–2473.

    Article  ADS  CAS  Google Scholar 

  • Schumaker, M.F., 2003. Numerical framework models of single-proton conduction through gramicidin. Front. Biosci. 8, s982–s991.

    PubMed  Google Scholar 

  • Schumaker, M.F., MacKinnon, R., 1990. A simple model for multi-ion permeation. Biophys. J. 58, 975–984.

    PubMed  CAS  Google Scholar 

  • Schumaker, M.F., Pomès, R., Roux, B., 2000. A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. Biophys. J. 79, 2840–2857.

    PubMed  CAS  Google Scholar 

  • Schumaker, M.F., Pomès, R., Roux, B., 2001. A framework model for single proton conductance through gramicidin. Biophys. J. 80, 12–30.

    PubMed  CAS  Google Scholar 

  • Schumaker, M.F., Watkins, D.S., 2004. A framework model based on the Smoluchowski equation in two reaction coordinates. J. Chem. Phys. 121, 6134–6144.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tolokh, I.S., White, G.W.N., Goldman, S., Gray, C.G., 2002. Prediction of ion channel transport from Grote-Hynes and Kramers theories. Mol. Phys. 100, 2351–2359.

    Article  CAS  ADS  Google Scholar 

  • Tripathi, S., Hladky, S.B., 1998. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes. Biophys. J. 74, 2912–2917.

    PubMed  CAS  Google Scholar 

  • Tuckerman, M.E., Berne, B.J., 1991. Stochastic molecular dynamics in systems with multiple timescales and memory friction. J. Chem. Phys. 95, 4389–4396.

    Article  CAS  ADS  Google Scholar 

  • Yin, H.-M., 2004. On a class of parabolic equations with nonlocal boundary conditions. J. Math. Anal. Appl. 294, 712–728.

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, C.-H., Cukierman, S., Pomès, R., 2003. Theoretical study of the structure and dynamic fluctuations of dioxolane-linked gramicidin channels. Biophys. J. 84, 816–831.

    PubMed  CAS  Google Scholar 

  • Zhou, M., MacKinnon, R., 2004. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. J. Mol. Biol. 338, 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Zwanzig, R., 2001. Nonequilibrium Statistical Mechanics. Oxford University Press, New York.

  • Zwanzig, R.W., 1961. Statistical mechanics of irreversibility. In: Brittin, W.E., Downs, B.W., Downs, J. (Eds.), Lectures in Theoretical Physics, vol. 3. Interscience, New York, pp. 106–141.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Mapes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mapes, E.J., Schumaker, M.F. Framework Models of Ion Permeation Through Membrane Channels and the Generalized King–Altman Method. Bull. Math. Biol. 68, 1429–1460 (2006). https://doi.org/10.1007/s11538-005-9016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9016-1

Keywords

Navigation