Skip to main content
Log in

A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind. The activating function formalism is extended to arbitrary neuron geometries, and a segmentation method to guarantee an appropriate choice of collocation points is presented. Differential quadrature may then be applied to efficiently solve the resulting cable equations. The capacity for this model to simulate action potentials propagating through branching structures and to predict minimum extracellular stimulation thresholds for individual neurons is demonstrated. The presented model is validated against published values for extracellular stimulation threshold and conduction velocity for realistic physiological parameter values. This model suggests that convoluted axon geometries are more readily activated by extracellular stimulation than linear axon geometries, which may have ramifications for the design of neural prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10(1):40–52

    Article  Google Scholar 

  2. Bellomo N (1997) Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods. Math Comput Model 26(4):13–34

    Article  Google Scholar 

  3. Benabid A, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, Payen I, Benazzouz A (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84(2):203–214

    Article  CAS  PubMed  Google Scholar 

  4. Berrut JP, Trefethen LN (2004) Barycentric lagrange interpolation. SIAM Rev 46(3):501–517

    Article  Google Scholar 

  5. Briggman KL, Euler T (2011) Bulk electroporation and population calcium imaging in the adult mammalian retina. J Neurophysiol 105(5):2601–2609

    Article  PubMed  Google Scholar 

  6. Coleman PA, Miller RF (1989) Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. J Neurophysiol 61(1):218–30

    CAS  PubMed  Google Scholar 

  7. Constantine G, Savits T (1996) A multivariate Faa di bruno formula with applications. Trans Am Math Soc 348(2):503–520

    Article  Google Scholar 

  8. de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, Mahadevappa M, Yanai D, McMahon MJ, Humayun MS, Greenberg RJ, Weiland JD, Fine I (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49(6):2303–14

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dokos S, Suaning GJ, Lovell NH (2005) A bidomain model of epiretinal stimulation. IEEE Trans Neural Syst Rehabil Eng 13(2):137–146

    Article  PubMed  Google Scholar 

  10. Durand D (1984) The somatic shunt cable model for neurons. Biophys J 46(5):645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eiber CD, Lovell NH, Suaning GJ (2013) Attaining higher resolution visual prosthetics: a review of the factors and limitations. J Neural Eng 10(1):011,002

    Article  Google Scholar 

  12. Eickenscheidt M, Zeck G (2014) Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential. J Neural Eng 11(3):036,006

    Article  Google Scholar 

  13. FitzGibbon T, Taylor SF (2012) Mean retinal ganglion cell axon diameter varies with location in the human retina. Jpn J Ophthalmol 56(6):631–7

    Article  CAS  PubMed  Google Scholar 

  14. Fohlmeister JF, Miller RF (1997) Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J Neurophysiol 78(4):1935–47

    CAS  PubMed  Google Scholar 

  15. Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110(2):1150–63

    Article  CAS  PubMed  Google Scholar 

  16. Fu QJ, Shannon RV (1999) Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant. Ear Hear 20(4):321–331

    Article  CAS  PubMed  Google Scholar 

  17. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, Nishida K, Kishima H, Maruo T, Konoma K, Ozawa M, Nishida K (2011) Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(7):4726–4733

    Article  PubMed  Google Scholar 

  18. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo T, Tsai D, Bai S, Morley JW, Suaning GJ, Lovell NH, Dokos S (2014) Understanding the retina: A review of computational models of the retina from the single cell to the network level. Crit Rev Biomed Eng 42(5):419–436

    Article  PubMed  Google Scholar 

  20. Guo T, Tsai D, Morley JW, Suaning GJ, Lovell NH, Dokos S (2013) Cell-specific modeling of retinal ganglion cell electrical activity. Conf Proc IEEE Eng Med Biol Soc 2013:6539–42

    PubMed  Google Scholar 

  21. Heynen H, van Norren D (1985) Origin of the electroretinogram in the intact macaque eye-II. Current source-density analysis. Vis Res 25(5):709–715

    Article  CAS  PubMed  Google Scholar 

  22. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6(9):813–827

    Article  Google Scholar 

  23. Holsheimer J (1997) Wesselink WA Effect of anode-cathode configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 41(3):654–659 (discussion 659–660)

    CAS  PubMed  Google Scholar 

  24. Huang Q, Oya H, Flouty OE, Reddy CG, Howard MA, Gillies GT, Utz M (2014) Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling. Med Biol Eng Comput 52(6):531–538

    Article  PubMed  Google Scholar 

  25. Ishida AT (1995) Ion channel components of retinal ganglion cells. Prog Retin Eye Res 15(1):261–280

    Article  Google Scholar 

  26. Izadian J, Nateghi F, Jalili M (2013) Comparison of spectral and differential quadrature methods for solving the Burger-Huxley equation. Commun Numer Anal 2013:1–7

    Article  Google Scholar 

  27. Jiwari R, Pandit S, Mittal R (2012) A differential quadrature algorithm for the numerical solution of the second order one dimensional hyperbolic telegraph equation. Int J Nonlinear Sci 13(3):259–266

    Google Scholar 

  28. Kashef B, Bellman R (1974) Solution of the partial differential equation of the Hodgkin-Huxley model using differential quadrature. Math Biosci 19(1):1–8

    Article  Google Scholar 

  29. Kopriva DA (2009) Spectral element methods. Springer, Berlin

    Book  Google Scholar 

  30. McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006

    PubMed  Google Scholar 

  31. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng BME–23(4):329–337

    Article  Google Scholar 

  32. Nagarajan SS, Durand DM, Warman EN (1993) Effects of induced electric fields on finite neuronal structures: a simulation study. IEEE Trans Biomed Eng BME 40(11):1175–1188

    Article  CAS  Google Scholar 

  33. Neu WK (2016) Analytical solution for time-dependent potentials in a fiber stimulated by an external electrode. Med Biol Eng Comput 55(1):1–7

    Google Scholar 

  34. Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36(7):676–682

    Article  CAS  PubMed  Google Scholar 

  35. Trefethen LN (2000) Spectral methods in MATLAB, vol 10. SIAM, Philadelphia

    Book  Google Scholar 

  36. Tsai D, Morley JW, Suaning GJ, Lovell NH (2009) Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation. J Neurophysiol 102(5):2982–2993

    Article  PubMed  Google Scholar 

  37. Vrabec T, Bhadra N, Wainright J, Bhadra N, Franke M, Kilgore K (2015) Characterization of high capacitance electrodes for the application of direct current electrical nerve block. Med Biol Eng Comput 54(1):191–203

    Article  PubMed  PubMed Central  Google Scholar 

  38. Warman EN, Grill WM, Durand D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng BME–39(12):1244–1254

    Article  Google Scholar 

  39. Wikswo JP, Roth BJ (2009) Virtual electrode theory of pacing, book section 12. Springer, US

    Google Scholar 

  40. Wiley JD, Webster JG (1982) Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans Biomed Eng BME–29(5):381–385

    Article  Google Scholar 

  41. Wilson BS, Dorman MF (2008) Cochlear implants: current designs and future possibilities. J Rehabil Res Dev 45(5):695–730

    Article  PubMed  Google Scholar 

  42. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278(1711):1489–97

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tianruo Gou for his generous assistance in providing the parameters of the ion channel model and the expertise to translate its implementation. We would also like to thank Chih (John) Yang and Dr. Andrew Wooley for providing the detailed anatomical images of RGCs used in this work.

This research was supported by the National Health and Medical Research Council (APP1087224), Australia, and the Australian Research Council through its Special Research Initiative in Bionic Vision Science and Technology granted to Bionic Vision Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin D. Eiber.

Ethics declarations

Ethics statement

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Surgical and experimental procedures were reviewed and conducted with approval from the UNSW Animal Care and Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiber, C.D., Dokos, S., Lovell, N.H. et al. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons. Med Biol Eng Comput 55, 823–831 (2017). https://doi.org/10.1007/s11517-016-1558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1558-x

Keywords

Navigation