Skip to main content

Modeling Peripheral Nerve Stimulation

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 220 Accesses

Abstract

The use of modeling to simulate the effects of electrical stimulation on the nervous system can improve the development and use of neuroprosthesis devices, avoid long adjustment tests during the implantation surgery, and select a priori relevant parameters that could improve the benefits of stimulation and reduce side effects. In this chapter, we will focus on ways to model the nervous system in response to electrical stimulation, starting with electrical properties of the neuron membrane and ending with complex biophysics models representing the whole nerve trunk.

Modeling of the peripheral nerve is a huge topic, and the first computational model could be considered to be almost 70 years old from the work of Hodgkin and Huxley. From this key starting point, both the membrane electrophysiological behavior and the biophysics of the conductive tissue get increased interest and accuracy. Finally, with the rise of more and more powerful computers and numerical solvers, it is now possible to gain insight into the intimate functioning of the axon and the nerve electrophysiological behavior. It could be used in two ways, from traveling action potentials to recording electrodes or from stimulating electrodes through current injection to action potential delivery. The chapter focuses on the second topic knowing that almost all the modeling frame is valid to achieve the inverse problem. We thus detail the method to model the biophysics and then the membrane dynamics up to the axon level through detailed equations and examples. The extension to the spinal cord or brain neural network is not introduced even though the basics remain similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blight, A.: Computer simulation of action potentials and afterpotentials in mammalian myelinated axons: the case for a lower resistance myelin sheath. Neuroscience 15(1), 13–31 (1985)

    Google Scholar 

  2. Bossetti, C.A., Birdno, M.J., Grill, W.M.: Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. J. Neural Eng. 5(1), 44–53 (2008)

    Google Scholar 

  3. Brill, N., Polasek, K., Oby, E., Ethier, C., Miller, L., Tyler, D.: Nerve cuff stimulation and the effect of fascicular organization for hand grasp in nonhuman primates. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, vol. 2009, pp. 1557–1560 (2009)

    Google Scholar 

  4. Brill, N., Tyler, D.: Optimizing nerve cuff stimulation of targeted regions through use of genetic algorithms. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, pp. 5811–5814 (2011)

    Google Scholar 

  5. Chintalacharuvu, R., Ksienski, D., Mortimer, J.: A numerical analysis of the electric field generated by a nerve cuff electrode. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, pp. 912–913 (1991)

    Google Scholar 

  6. Chiu, S., Ritchie, J., Rogart, R., Stagg, D.: A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol. 292(1), 149–166 (1979)

    Google Scholar 

  7. Choi, A.Q., Cavanaugh, J.K., Durand, D.M.: Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis. IEEE Trans. Biomed. Eng. 48(2), 165–172 (2001)

    Google Scholar 

  8. Choi, C.T.M., Lee, S.S.: A new flat interface nerve electrode design scheme based on finite element method, genetic algorithm and computational neuroscience method. IEEE Trans. Magn. 42, 1119–1122 (2006)

    Google Scholar 

  9. Clerc, M., Veltz, R., Guiraud, D., Divoux, J.-L.: The 3D potential induced by functional electrical stimulation with multi-contact cuff electrodes: simulation and validation. In: 13th Annual Conference of the International Functional Electrical Stimulation Society, pp. 1–3 (2008)

    Google Scholar 

  10. Dali, M., Rossel, O., Andreu, D., Laporte, L., Hernández, A., Laforet, J., Marijon, E., Hagège, A., Clerc, M., Henry, C., et al.: Model based optimal multipolar stimulation without a priori knowledge of nerve structure: application to vagus nerve stimulation. J. Neural Eng. 15(4), 046018 (2018)

    Google Scholar 

  11. D’Inzeo, G., Giacomozzi, C., Pisa, S.: Analysis of the stimulation of a nerve fiber surrounded by an inhomogeneous, anisotropic, and dispersive tissue. ACES J 7(2), 179–190 (1992)

    Google Scholar 

  12. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. Publisher Unknown (1966)

    Google Scholar 

  13. Frankenhaeuser, B., Huxley, A.: The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. 171, 302–315 (1964)

    Google Scholar 

  14. Frieswijk, T., Smit, J.P., Rutten, W.L., Boom, H.B.: Force-current relationships in intraneural stimulation: role of extraneural medium and motor fibre clustering. Med. Biol. Eng. Comput. 36(4), 422–430 (1998)

    Google Scholar 

  15. Frijns, J.H., de Snoo, S.L., Schoonhoven, R.: Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res. 87(1–2), 170–86 (1995)

    Google Scholar 

  16. Geddes, L., Baker, L.: The specific resistance of biological material – a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. Comput. 5(3), 271–293 (1967)

    Google Scholar 

  17. Geddes, L., Bourland, J.: The strength-duration curve. IEEE Trans. Biomed. Eng. 32(6), 458–459 (1985)

    Google Scholar 

  18. Goodall, E., Kosterman, L., Holsheimer, J., Struijk, J.: Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode. IEEE Trans. Rehabil. Eng. 3(3), 272–282 (1995)

    Google Scholar 

  19. Grill, W.M.: Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties. IEEE Trans. Bio-Med. Eng. 46(8), 918–928 (1999)

    Google Scholar 

  20. Grill, W.M., Mortimer, J.T.: Electrical properties of implant encapsulation tissue. Ann. Biomed. Eng. 22(1), 23–33 (1994)

    Google Scholar 

  21. Grill, W.M., Mortimer, J.T.: The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Bio-Med. Eng. 43(2), 161–166 (1996)

    Google Scholar 

  22. Grinberg, Y., Schiefer, M.A., Tyler, D.J., Gustafson, K.J.: Fascicular perineurium thickness, size, and position affect model predictions of neural excitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 572–581 (2008)

    Google Scholar 

  23. Helmers, S.L., Begnaud, J., Cowley, A., Corwin, H.M., Edwards, J.C., Holder, D.L., Kostov, H., Larsson, P.G., Levisohn, P.M., De Menezes, M.S., Stefan, H., Labiner, D.M.: Application of a computational model of vagus nerve stimulation. Acta Neurol. Scand. 126(5), 336–343 (2012)

    Google Scholar 

  24. Heringa, A., Stegeman, D.F., Uijen, G.J., de Weerd, J.P.: Solution methods of electrical field problems in physiology. IEEE Trans. Bio-Med. Eng. 29(1), 34–42 (1982)

    Google Scholar 

  25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(1–2), 500–544 (1952)

    Google Scholar 

  26. Horch, K., Gurpreet, D. (eds.): Neuroprosthetics: Theory and Practice. World Scientific, Singapore (2004)

    Google Scholar 

  27. Hursh, J.: Conduction velocity and diameter of nerve fibers. Am. J. Physiol.–Legacy Content 127(1), 131–139 (1939)

    Google Scholar 

  28. Izad, O.: Computationally Efficient Method in Predicting Axonal Excitation. PhD thesis, Case Western Reserve University (2009)

    Google Scholar 

  29. Jacquir, S., Fruitet, J., Guiraud, D., Clerc, M.: Computation of the electrical potential inside the nerve induced by an electrical stimulus. In: Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings, vol. 2007, pp. 1711–1714 (2007)

    Google Scholar 

  30. Joucla, S., Yvert, B.: Modeling extracellular electrical neural stimulation: from basic understanding to mea-based applications. J. Physiol.-Paris 106(3), 146–158 (2012)

    Google Scholar 

  31. Kilgore, K.L., Bhadra, N.: Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42(3), 394–406 (2004)

    Google Scholar 

  32. Laforet, J., Guiraud, D., Clerc, M.: A toolchain to simulate and investigate selective stimulation strategies for FES. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, vol. 2009, pp. 4966–4969 (2009)

    Google Scholar 

  33. Lapique, L.: Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Gen. 9, 620–635 (1907)

    Google Scholar 

  34. Lertmanorat, Z., Durand, D.M.: A novel electrode array for diameter-dependent control of axonal excitability: a simulation study. IEEE Trans. Biomed. Eng. 51(7), 1242–1250 (2004)

    Google Scholar 

  35. Lertmanorat, Z., Durand, D.M.: Extracellular voltage profile for reversing the recruitment order of peripheral nerve stimulation: a simulation study. J. Neural Eng. 1(4), 202–211 (2004)

    Google Scholar 

  36. McIntyre, C.C., Richardson, A.G., Grill, W.M.: Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J. Neurophysiol. 87(2), 995–1006 (2002)

    Google Scholar 

  37. McNeal, D.R.: Analysis of a model for excitation of myelinated nerve. IEEE Trans. Bio-Med. Eng. 23(4), 329–337 (1976)

    Google Scholar 

  38. Moffitt, M.A., McIntyre, C.C., Grill, W.M.: Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models. IEEE Trans. Biomed. Eng. 51(2), 229–236 (2004)

    Google Scholar 

  39. Mogyoros, I., Kiernan, M.C., Burke, D.: Strength-duration properties of human peripheral nerve. Brain 119(2), 439–447 (1996)

    Google Scholar 

  40. Nelson, M.E.: Electrophysiological models. In: Databasing the Brain: From Data to Knowledge, John Wiley & Sons, Inc. pp. 285–301 (2004)

    Google Scholar 

  41. Nielsen, T.N., Kurstjens, G.M., Struijk, J.J.: Transverse versus longitudinal tripolar configuration for selective stimulation with multipolar cuff electrodes. IEEE Trans. Biomed. Eng. 58(4), 913–919 (2011)

    Google Scholar 

  42. Pelot, N.A., Behrend, C., Grill, W.: Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals. J. Neural Eng. 14, 046022 (2017)

    Google Scholar 

  43. Peterson, E., Izad, O., Tyler, D.: Predicting myelinated axon activation using spatial characteristics of the extracellular field. J. Neural Eng. 8(4), 046030 (2011)

    Google Scholar 

  44. Plonsey, R.: Bioelectric Phenomena. Wiley Online Library. McGraw-Hill (1969)

    Google Scholar 

  45. Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed. Eng. 5, 371–381 (1974)

    Google Scholar 

  46. Plonsey, R., Heppner, D.B.: Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29, 657–664 (1967)

    Google Scholar 

  47. Ranck, J.B., BeMent, S.L.: The specific impedance of the dorsal columns of cat: an anisotropic medium. Exp. Neurol. 11(4), 451–463 (1965)

    Google Scholar 

  48. Raspopovic, S., Capogrosso, M., Micera, S.: A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 333–344 (2011)

    Google Scholar 

  49. Rattay, F.: Analysis of models for external stimulation of axons. IEEE Trans. Bio-Med. Eng. 33(10), 974–977 (1986)

    Google Scholar 

  50. Rattay, F.: Modeling the excitation of fibers under surface electrodes. IEEE Trans. Biomed. Eng. 35(3), 199–202 (1988)

    Google Scholar 

  51. Rattay, F.: Analysis of models for extracellular fiber stimulation. IEEE Trans. Bio-Med. Eng. 36(7), 676–682 (1989)

    Google Scholar 

  52. Rattay, F.: Electrical Nerve Stimulation. Springer Verlag Wien GmbH, Springer (1990)

    Google Scholar 

  53. Rattay, F.: Functional electrical stimulation of the central nervous system: analysis of the primarily excited structures. PhD thesis, Université de médecine de Vienne (Medizinische Universität Wien) (2005)

    Google Scholar 

  54. Rattay, F., Aberham, M.: Modeling axon membranes for functional electrical stimulation. IEEE Trans. Biomed. Eng. 40(12), 1201–1209 (1993)

    Google Scholar 

  55. Rattay, F., Greenberg, R., Resatz, S.: Neuron modeling. In: Finn, W.E., LoPresti, P.G. (eds.) Handbook of Neuroprosthetic Methods, ch. 3, pp. 39–71. CRC Press, Hoboken (2002)

    Google Scholar 

  56. Reilly, J.P., Freeman, V.T., Larkin, W.D.: Sensory effects of transient electrical stimulation-evaluation with a neuroelectric model. IEEE Trans. Biomed. Eng. 32(12), 1001–1011 (1985)

    Google Scholar 

  57. Richardson, A., McIntyre, C., Grill, W.: Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath. Med. Biol. Eng. Comput. 38(4), 438–446 (2000)

    Google Scholar 

  58. Rutten, W.L.: Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 4(1), 407–452 (2002)

    Google Scholar 

  59. Schiefer, M.A., Triolo, R.J., Tyler, D.J.: A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 16(2), 195–204 (2008)

    Google Scholar 

  60. Schwarz, J.R., Eikhof, G.: Na currents and action potentials in rat myelinated nerve fibres at 20 and 37 c. Pflügers Archiv Eur. J. Physiol. 409(6), 569–577 (1987)

    Google Scholar 

  61. Schwarz, J.R., Reid, G., Bostock, H.: Action potentials and membrane currents in the human node of ranvier. Pflügers Archiv Eur. J. Physiol. 430(2), 283–292 (1995)

    Google Scholar 

  62. Struijk, J.J.: Electrical stimulation of the neuromuscular system. In: Horch, K., Gurpreet, D. (eds.) Neuroprosthetics: Theory and Practice, ch. 1, pp. 3–28. World Scientific, Singapore (2004)

    Google Scholar 

  63. Struijk, J.J., Holsheimer, J., van Veen, B.K., Boom, H.B.: Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans. Bio-Med. Eng. 38(1), 104–110 (1991)

    Google Scholar 

  64. Sweeney, J., Mortimer, J., Durand, D.: Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. In: IEEE/Engineering in Medicine and Biology Society Annual Conference (1987). IEEE

    Google Scholar 

  65. Sweeney, J.D., Ksienski, D.A., Mortimer, J.T.: A nerve cuff technique for selective excitation of peripheral nerve trunk regions. IEEE Trans. Biomed. Eng. 37(7), 706–715 (1990)

    Google Scholar 

  66. Szlavik, R.B., de Bruin, H.: The effect of anisotropy on the potential distribution in biological tissue and its impact on nerve excitation simulations. IEEE Trans. Biomed. Eng. 47(9), 1202–1210 (2000)

    Google Scholar 

  67. Taylor, R.E.: Cable theory. Phys. Tech. Biol. Res. 6, 219–262 (1963)

    Google Scholar 

  68. Veltink, P., Boom, H., van Veen, B.: A model study on fascicle selective stimulation of multi-fascicular nerves. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1988)

    Google Scholar 

  69. Veltink, P.H., van Alsté, J.A., Boom, H.B.: Simulation of intrafascicular and extraneural nerve stimulation. IEEE Trans. Bio-Med. Eng. 35(1), 69–75 (1988)

    Google Scholar 

  70. Veltink, P.H., van Veen, B.K., Struijk, J.J., Holsheimer, J., Boom, H.B.: A modeling study of nerve fascicle stimulation. IEEE Trans. Bio-Med. Eng. 36(7), 683–692 (1989)

    Google Scholar 

  71. Veraart, C., Grill, W.M., Mortimer, J.T.: Selective control of muscle activation with a multipolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 40(7), 640–653 (1993)

    Google Scholar 

  72. Warman, E.N., Grill, W.M., Durand, D.: Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans. Biomed. Eng. 39(12), 1244–1254 (1992)

    Google Scholar 

  73. Weerasuriya, A., Spangler, R.A., Rapoport, S.I., Taylor, R.: Ac impedance of the perineurium of the frog sciatic nerve. Biophys. J. 46(2), 167–174 (1984)

    Google Scholar 

  74. Weiss, G.: Sur la possibilite de rendre comparables entre eux les appareils servant a l’excitation electrique. Archives Italiennes de Biologie 35(1), 413–445 (1901)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Guiraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dali, M., Guiraud, D. (2023). Modeling Peripheral Nerve Stimulation. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_61

Download citation

Publish with us

Policies and ethics