Skip to main content
Log in

Characterization of high capacitance electrodes for the application of direct current electrical nerve block

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Direct current (DC) can briefly produce a reversible nerve conduction block in acute experiments. However, irreversible reactions at the electrode–tissue interface have prevented its use in both acute and chronic settings. A high capacitance material (platinum black) using a charge-balanced waveform was evaluated to determine whether brief DC block (13 s) could be achieved repeatedly (>100 cycles) without causing acute irreversible reduction in nerve conduction. Electrochemical techniques were used to characterize the electrodes to determine appropriate waveform parameters. In vivo experiments on DC motor conduction block of the rat sciatic nerve were performed to characterize the acute neural response to this novel nerve block system. Complete nerve motor conduction block of the rat sciatic nerve was possible in all experiments, with the block threshold ranging from −0.15 to −3.0 mA. DC pulses were applied for 100 cycles with no nerve conduction reduction in four of the six platinum black electrodes tested. However, two of the six electrodes exhibited irreversible conduction degradation despite charge delivery that was within the initial Q (capacitance) value of the electrode. Degradation of material properties occurred in all experiments, pointing to a possible cause of the reduction in nerve conduction in some platinum black experiments .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Accornero N, Bini G, Lenzi GL, Manfredi M (1977) Selective activation of peripheral nerve fibre groups of different diameter by triangular shaped stimulus pulses. J Physiol 273:539–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ackermann D, Foldes EL, Bhadra N, Kilgore KL (2009) Electrode design for high frequency block: effect of bipolar separation on block thresholds and the onset response. Conf Proc IEEE Eng Med Biol Soc 2009:654–657. doi:10.1109/IEMBS.2009.5332738

    CAS  PubMed  Google Scholar 

  3. Ackermann DM Jr, Bhadra N, Foldes EL, Wang XF, Kilgore KL (2010) Effect of nerve cuff electrode geometry on onset response firing in high-frequency nerve conduction block. IEEE Trans Neural Syst Rehabil Eng 18:658–665. doi:10.1109/TNSRE.2010.2071882

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ackermann DM Jr, Bhadra N, Foldes EL, Kilgore KL (2011) Conduction block of whole nerve without onset firing using combined high frequency and direct current. Med Biol Eng Comput 49:241–251. doi:10.1007/s11517-010-0679-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ackermann DM Jr, Bhadra N, Foldes EL, Kilgore KL (2011) Separated interface nerve electrode prevents direct current induced nerve damage. J Neurosci Methods 201:173–176. doi:10.1016/j.jneumeth.2011.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bhadra N, Kilgore KL (2004) Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng 12:313–324. doi:10.1109/TNSRE.2004.834205

    Article  PubMed  Google Scholar 

  7. Bhadra N, Kilgore KL (2004) High-frequency nerve conduction block. Conf Proc IEEE Eng Med Biol Soc 7:4729–4732

    CAS  PubMed  Google Scholar 

  8. Bhadra N, Kilgore KL (2005) High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve 32:782–790. doi:10.1002/mus.20428

    Article  PubMed  Google Scholar 

  9. Bhadra N, Grunewald V, Creasey G, Mortimer JT (2002) Selective suppression of sphincter activation during sacral anterior nerve root stimulation. Neurourol Urodyn 21:55–64

    Article  PubMed  Google Scholar 

  10. Brummer SB, Turner MJ (1977) Electrical stimulation with Pt electrodes: II-estimation of maximum surface redox (theoretical non-gassing) limits. IEEE Trans Biomed Eng 24:440–443

    Article  CAS  PubMed  Google Scholar 

  11. Brummer SB, Turner MJ (1977) Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans Biomed Eng 24:59–63. doi:10.1109/TBME.1977.326218

    Article  CAS  PubMed  Google Scholar 

  12. Cangiano A, Lutzemberger L (1972) The action of selectively activated group II muscle afferent fibers on extensor motoneurons. Brain Res 41:475–478

    Article  CAS  PubMed  Google Scholar 

  13. Casey KL, Blick M (1969) Observations on anodal polarization of cutaneous nerve. Brain Res 13:155–167

    Article  CAS  PubMed  Google Scholar 

  14. Cogan SF (2006) In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes. Conf Proc IEEE Eng Med Biol Soc 1:882–885. doi:10.1109/IEMBS.2006.259654

    PubMed  Google Scholar 

  15. Coleridge HM, Coleridge JC, Dangel A, Kidd C, Luck JC, Sleight P (1973) Impulses in slowly conducting vagal fibers from afferent endings in the veins, atria, and arteries of dogs and cats. Circ Res 33:87–97

    Article  CAS  PubMed  Google Scholar 

  16. Feltham AM, Spiro M (1970) Platinized platinum electrodes. Chem Rev 71:177–193

    Article  Google Scholar 

  17. Foldes EL, Ackermann DM, Bhadra N, Kilgore KL, Bhadra N (2011) Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use. J Neurosci Methods 196:31–37

    Article  PubMed  PubMed Central  Google Scholar 

  18. Franke M, Vrabec T, Wainright J, Bhadra N, Bhadra N, Kilgore KL (2014) Combined KHFAC + DC nerve block without onset or reduced nerve conductivity post block. J Neural Eng. doi:10.1088/1741-2560/11/5/056012

    PubMed  Google Scholar 

  19. Goldman SA, Pulsinelli WA, Clarke WY, Kraig RP, Plum F (1989) The effects of extracellular acidosis on neurons and glia invitro. J Cereb Blood Flow Metab 9:471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guz A, Trenchard DW (1971) The role of non-myelinated vagal afferent fibres from the lungs in the genesis of tachypnoea in the rabbit. J Physiol 213:345–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX (2013) Investigating the electrochemical windows of ionic liquids. J Ind Eng Chem 19:106–112. doi:10.1016/j.jiec.2012.07.011

    Article  CAS  Google Scholar 

  22. Hopp FA, Seagard JL (1998) Respiratory responses to selective blockade of carotid sinus baroreceptors in the dog. Am J Physiol 275:R10–R18

    CAS  PubMed  Google Scholar 

  23. Hopp FA, Zuperku EJ, Coon RL, Kampine JP (1980) Effect of anodal blockade of myelinated fibers on vagal C-fiber afferents. Am J Physiol 239:R454–R462

    CAS  PubMed  Google Scholar 

  24. Huang CQ, Carter PM, Shepherd RK (2001) Stimulus induced pH changes in cochlear implants: an in vitro and in vivo study. Ann Biomed Eng 29:791–802. doi:10.1114/1.1397793

    Article  CAS  PubMed  Google Scholar 

  25. Kato M, Fukushima K (1974) Effect of differential blocking of motor axons on antidromic activation of renshaw cells in the cat. Exp Brain Res 20:135–143

    Article  CAS  PubMed  Google Scholar 

  26. Kilgore K, Bhadra N (2004) Nerve conduction block utilising high-frequency alternating current. Med Biol Eng Compu 42:394

    Article  CAS  Google Scholar 

  27. Kilgore KL, Bhadra N (2013) Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation J Int Neuromodulation Soc. doi:10.1111/ner.12100

    Google Scholar 

  28. Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, Bryden AM, Snyder SA, Stage TG (2003) Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev 40:457–468

    Article  PubMed  Google Scholar 

  29. Kloke A, von Stetten F, Zengerle R, Kerzenmacher S (2011) Strategies for the fabrication of porous platinum electrodes. Adv Mater 23:4976–5008. doi:10.1002/adma.201102182

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan L, Morris SE, Eisman GA (2008) Platinum black polymer electrolyte membrane based electrodes revisited. J Electrochem Soc 155:B869–B876. doi:10.1149/1.2945231

    Article  CAS  Google Scholar 

  31. Manfredi M (1970) Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch Ital Biol 108:52–71

    CAS  PubMed  Google Scholar 

  32. McCloskey DI, Mitchell JH (1972) The use of differential nerve blocking techniques to show that the cardiovascular and respirator reflexes originating in exercising muscle are not mediated by large myelinated afferents. J Anat 111:331–332

    CAS  PubMed  Google Scholar 

  33. McCreery DB, Agnew WF, Yuen TG, Bullara LA (1988) Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng 16:463–481

    Article  CAS  PubMed  Google Scholar 

  34. Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198. doi:10.1016/j.jneumeth.2004.10.020

    Article  PubMed  Google Scholar 

  35. Mills A (2006) Platinized platinum, platinum sponge and platinum black. Bull Sci Instrum Soc 89:35–37

    Google Scholar 

  36. Mosquera A, Horwat D, Vazquez L, Gutiérrez A, Erko A, Anders A, Andersson J, Endrino JL (2012) Thermal decomposition and fractal properties of sputter-deposited platinum oxide thin films. J Mater Res 27(829–836):M823–M828. doi:10.1557/jmr.2011.1418

    Google Scholar 

  37. Petruska JC, Hubscher CH, Johnson RD (1998) Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei. Exp Brain Res 121:379–390

    Article  CAS  PubMed  Google Scholar 

  38. Ravid E, Prochazka A (2014) Controlled nerve ablation with direct current: parameters and mechanisms. IEEE Trans Neural Syst Rehabil Eng. doi:10.1109/TNSRE.2014.2307756

    PubMed  Google Scholar 

  39. Rijkhoff NJ, Hendrikx LB, van Kerrebroeck PE, Debruyne FM, Wijkstra H (1997) Selective detrusor activation by electrical stimulation of the human sacral nerve roots. Artif Organs 21:223–226

    Article  CAS  PubMed  Google Scholar 

  40. Sant’Ambrogio G, Decandia M, Provini L (1966) Diaphragmatic contribution to respiration in the rabbit. J Appl Physiol 21:843–847

    PubMed  Google Scholar 

  41. Sassen M, Zimmermann M (1973) Differential blocking of myelinated nerve fibres by transient depolarization. Pflugers Arch 341:179–195

    Article  CAS  PubMed  Google Scholar 

  42. Sawyer DT, Sobkowiak A, Roberts JJL (1995) Electrochemistry for chemists, 2nd edn. Wiley, London

    Google Scholar 

  43. Schuettler M (2007) Electrochemical properties of platinum electrodes in vitro: comparison of six different surface qualities. Conf Proc IEEE Eng Med Biol Soc 2007:186–189

    PubMed  Google Scholar 

  44. Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39:424–426. doi:10.1109/10.126616

    Article  CAS  PubMed  Google Scholar 

  45. Sweeney JD, Mortimer JT (1986) An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials. IEEE Trans Biomed Eng 33:541–549. doi:10.1109/TBME.1986.325818

    Article  CAS  PubMed  Google Scholar 

  46. Thoren P, Shepherd JT, Donald DE (1977) Anodal block of medullated cardiopulmonary vagal afferents in cats. J Appl Physiol Respir Environ Exerc Physiol 42:461–465

    CAS  PubMed  Google Scholar 

  47. Vrabec T, Wainright J, Bhadra N, Bhadra N, Kilgore K (2012) Use of high surface area electrodes for safe delivery of direct current for nerve conduction block. In: Meeting Abstracts, vol 18. The electrochemical society, pp 2026–2026

  48. Whitman JG, Kidd C (1975) The use of direct current to cause selective block of large fibres in peripheral nerves. http://www.ncbi.nlm.nih.gov/pubmed/1218139. Accessed 11 47

  49. Will FG (1965) Hydrogen adsorption on platinum single crystal electrodes. i. isotherms and heats of adsorption. J Electrochem Soc 112:451–455. doi:10.1149/1.2423567

    Article  CAS  Google Scholar 

  50. Zecevic SL, Wainright JS, Litt MH, Gojkovic SL, Savinell RF (1997) Kinetics of O2 reduction on a Pt electrode covered with a thin film of solid polymer electrolyte. J Electrochem Soc 144:2973–2982. doi:10.1149/1.1837946

    Article  CAS  Google Scholar 

  51. Zimmermann M (1968) Selective activation of C-fibers. Pflugers Archiv fur die gesamte Physiologie des Menschen und der Tiere 301:329–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Vrabec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrabec, T., Bhadra, N., Wainright, J. et al. Characterization of high capacitance electrodes for the application of direct current electrical nerve block. Med Biol Eng Comput 54, 191–203 (2016). https://doi.org/10.1007/s11517-015-1385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1385-5

Keywords

Navigation