Skip to main content
Log in

Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

By definition, vascular impedance is described in the frequency domain as the ratio of sinusoidal functions of pressure and flow, yielding spectral values of impedance modulus and phase. The impedance spectrum is determined by the structure and physical properties of the vascular system, such that for a given system the relation between pressure and flow can be modified by alteration of the geometric or mechanical properties of the vascular segments. Whereas input impedance of an arterial system can be readily determined by simultaneous measurement of just two time varying signals of blood pressure and flow, the production of the same impedance spectrum from the physical properties of the system would require information of inordinate complexity and magnitude. Hence, arterial models with a tractable number of parameters or explicit mathematical description are used to approximate the physiological impedance of a vascular structure, which in all animal species consists of distributed branching arterial networks. Although models are a necessary approximation, the strong similarity between the impedance spectra of models and physiological arterial systems enables investigations of fundamental concepts. This is illustrated by examining the effect of the branching structure on the decoupling of the high peripheral resistance from the ejecting ventricles and how physical parameters derived from the impedance spectrum can be used to investigate concepts of optimal design and features related to body size across a broad range of animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avolio AP, O’Rourke MF, Mang K, Bason PT, Gow BS (1976) A comparative study of pulsatile arterial hemodynamics in rabbits and guinea pigs. Am J Physiol 230(4):868–875

    Google Scholar 

  2. Avolio AP, O’Rourke MF, Webster ME (1983) Pulse-wave propagation in the arterial system of the diamond python Morelia spilotes. Am J Physiol 245(6):R831–R836

    Google Scholar 

  3. Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718. doi:10.1007/BF02441895

    Article  Google Scholar 

  4. Avolio AP (1976) Haemodynamic studies and modeling of the mammalian arterial system. PhD Thesis, University of New South Wales, Sydney

  5. Bennett SH, Goetzman BW, Milstein JM, Pannu JS (1996) Role of arterial design on pulse wave reflection in a fractal pulmonary network. J Appl Physiol 80(3):1033–1056

    Google Scholar 

  6. Brown DJ (1996) Input impedance and reflection coefficient in fractal-like models of asymmetrically branching compliant tubes. IEEE Trans Biomed Eng 43(7):715–722. doi:10.1109/10.503179

    Article  Google Scholar 

  7. Burattini R, Di Carlo S (1988) Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance. IEEE Trans Biomed Eng 35(1):53–61. doi:10.1109/10.1336

    Article  Google Scholar 

  8. Elzinga G, Westerhof N (1991) Matching between ventricle and arterial load. An evolutionary process. Circ Res 68(6):1495–1500

    Google Scholar 

  9. Grasman J, Brascamp JW, Van Leeuwen JL, Van Putten B (2003) The multifractal structure of arterial trees. J Theor Biol 220(1):75–82

    Article  Google Scholar 

  10. Günther B (1975) Dimensional analysis and theory of biological similarity. Physiol Rev 55(4):659–699

    Google Scholar 

  11. Heymsfield SB, Childers D, Beetsch J, Allison DB, Pietrobelli A (2007) Body size and human energy requirements: reduced mass specific resting energy expenditure in tall adults. J Appl Physiol 103:1543–1550. doi:10.1152/japplphysiol.00461.2007

    Article  Google Scholar 

  12. Hlastala MP, Glenny RW (1999) Vascular structure determines pulmonary blood flow distribution. News Physiol Sci 14:182–186

    Google Scholar 

  13. Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF (1994) Functional origin of reflected pressure waves in a multibranched model of the human arterial system. Am J Physiol 267(5 Pt 2):H1681–H1688

    Google Scholar 

  14. Karamanoglu M, Gallagher DE, Avolio AP, O’Rourke MF (1995) Pressure wave propagation in a multibranched model of the human upper limb. Am J Physiol 269(4 Pt 2):H1363–H1369

    Google Scholar 

  15. Kassab GS (2006) Scaling laws of vascular trees: of form and function. Am J Physiol Heart Circ Physiol 290(2):H894–H903. doi:10.1152/ajpheart.00579.2005

    Article  Google Scholar 

  16. Krenz GS, Linehan JH, Dawson CA (1992) A fractal continuum model of the pulmonary arterial tree. J Appl Physiol 72(6):2225–2237

    Google Scholar 

  17. Lefèvre J (1983) Teleonomical optimization of a fractal model of the pulmonary arterial bed. J Theor Biol 102(2):225–248. doi:10.1016/0022-5193(83)90361-2

    Article  Google Scholar 

  18. Li JK, Noordergraaf A (1991) Similar pressure pulse propagation and reflection characteristics in aortas of mammals. Am J Physiol 261(3 Pt 2):R519–R521

    Google Scholar 

  19. Li JKJ (1996) Comparative cardiovascular dynamics of mammals. CRC Press, Boca Raton, pp 23–57

    Google Scholar 

  20. Milnor WR, Conti CR, Lewis KB, O’Rourke MF (1969) Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 25(6):637–649

    Google Scholar 

  21. Milnor WR (1979) Aortic wavelength as a determinant of the relation between heart rate and body size in mammals. Am J Physiol 237(1):R3–R6

    MathSciNet  Google Scholar 

  22. Mohiuddin MW, Laine GA, Quick CM (2007) Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel. Am J Physiol Heart Circ Physiol 293(2):H1164–H1171. doi:10.1152/ajpheart.00133.2007

    Article  Google Scholar 

  23. Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries. Arnold, London

    Google Scholar 

  24. Nichols WW, Avolio AP, O’Rourke MF (1986) Ascending aortic impedance patterns in the kangaroo: their explanation and relation to pressure waveforms. Circ Res 59(3):247–255

    Google Scholar 

  25. Noordergraaf A, Li JK, Campbell KB (1979) Mammalian hemodynamics: a new similarity principle. J Theor Biol 79(4):485–489. doi:10.1016/0022-5193(79)90239-X

    Article  Google Scholar 

  26. Noordergraaf A (1978) Circulatory system dynamics. Academic Press, New York, pp 105–156

    Google Scholar 

  27. O’Rourke MF, Avolio AP (1980) Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. Circ Res 46(3):363–372

    Google Scholar 

  28. O’Rourke MF (1967) Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J Appl Physiol 23(2):139–149

    Google Scholar 

  29. Pollack GH, Reddy RV, Noordergraaf A (1968) Input impedance, wave travel, and reflections in the human pulmonary arterial tree: studies using an electrical analog. IEEE Trans Biomed Eng 15(3):151–164. doi:10.1109/TBME.1968.4502559

    Article  Google Scholar 

  30. Quick CM, Berger DS, Stewart RH, Laine GA, Hartley CJ, Noordergraaf A (2006) Resolving the hemodynamic inverse problem. IEEE Trans Biomed Eng 53(3):361–368. doi:10.1109/TBME.2005.869664

    Article  Google Scholar 

  31. Quick CM, Young WL, Noordergraaf A (2001) Infinite number of solutions to the hemodynamic inverse problem. Am J Physiol Heart Circ Physiol 280(4):H1472–H1479

    Google Scholar 

  32. Rashevsky N (1960) Mathematical biology. Dover, New York

    Google Scholar 

  33. Rosen R (1967) Optimality principles in biology. Butterworths, London

    MATH  Google Scholar 

  34. Schmidt-Nielsen K (1984) Scaling: why is animal size so important. Cambridge University Press, Cambridge

    Google Scholar 

  35. Segers P, Stergiopulos N, Verdonck P, Verhoeven R (1997) Assessment of distributed arterial network models. Med Biol Eng Comput 35(6):729–736. doi:10.1007/BF02510985

    Article  Google Scholar 

  36. Sheng C, Sarwal SN, Watts KC, Marble AE (1995) Computational simulation of blood flow in human systemic circulation incorporating an external force field. Med Biol Eng Comput 33(1):8–17. doi:10.1007/BF02522938

    Article  Google Scholar 

  37. Smulyan H, Marchais SJ, Pannier B, Guerin AP, Safar ME, London GM (1998) Influence of body height on pulsatile arterial hemodynamic data. J Am Coll Cardiol 31(5):1103–1109. doi:10.1016/S0735-1097(98)00056-4

    Article  Google Scholar 

  38. Snyder MF, Rideout VC, Hillestad RJ (1968) Computer modeling of the human systemic arterial tree. J Biomech 1(4):341–353. doi:10.1016/0021-9290(68)90029-8

    Article  Google Scholar 

  39. Stergiopulos N, Meister JJ, Westerhof N (1995) Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall. Am J Physiol 269(4 Pt 2):H1490–H1495

    Google Scholar 

  40. Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25(12):1477–1488. doi:10.1016/0021-9290(92)90060-E

    Article  Google Scholar 

  41. Taylor MG (1966) The input impedance of an assembly of randomly branching elastic tubes. Biophys J 6(1):29–51

    Article  Google Scholar 

  42. Taylor MG (1966) Wave transmission through an assembly of randomly branching elastic tubes. Biophys J 6(6):697–716

    Article  Google Scholar 

  43. Taylor MG (1969) In: Fishman AP, Hecht HH (eds) The pulmonary circulation and interstitial space. University of Chicago Press, Chicago

  44. Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2(2):121–143. doi:10.1016/0021-9290(69)90024-4

    Article  Google Scholar 

  45. Westerhof N, Elzinga G (1991) Normalized input impedance and arterial decay time over heart period are independent of animal size. Am J Physiol 261(1 Pt 2):R126–R133

    Google Scholar 

  46. Westerhof N, Elzinga G, Sipkema P (1971) An artificial arterial system for pumping hearts. J Appl Physiol 31(5):776–781

    Google Scholar 

  47. Westerhof N, Scarborough WR, Noordergraaf A (1967) Some experiments on a delay line simulating the human systemic arterial tree, with special emphasis on the ballistocardiogram. Bibl Cardiol (19):141–150

  48. Wiener F, Morkin E, Skalak R, Fishman AP (1966) Wave propagation in the pulmonary circulation. Circ Res 19(4):834–850

    Google Scholar 

  49. Womersley JR (1957) The mathematical analysis of the arterial circulation in a state of oscillatory motion. Technical Report Wade-T. 56–614. Wright Air Development Centre, Dayton

  50. Womersley JR (1958) Oscillatory flow in arteries: the reflection of the pulse at junctions and rigid inserts in the arterial system. Phys Med Biol 2:313–323. doi:10.1088/0031-9155/2/4/301

    Article  Google Scholar 

  51. Zamir M (1999) On fractal properties of arterial trees. J Theor Biol 197(4):517–526. doi:10.1006/jtbi.1998.0892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Avolio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avolio, A. Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics. Med Biol Eng Comput 47, 143–151 (2009). https://doi.org/10.1007/s11517-008-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0413-0

Keywords

Navigation