Skip to main content
Log in

Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Long-term exposure to drugs of abuse causes an upregulation of the cAMP-signaling pathway in the nucleus accumbens and other forebrain regions, this common neuroadaptation is thought to underlie aspects of drug tolerance and dependence. Phosphodiesterase 4 (PDE4) is an enzyme that the selective hydrolyzes intracellular cAMP. It is expressed in several brain regions that regulate the reinforcing effects of drugs of abuse.

Objective

Here, we review the current knowledge about central nervous system (CNS) distribution of PDE4 isoforms and the effects of systemic and brain-region specific inhibition of PDE4 on behavioral models of drug addiction.

Methods

A systematic literature search was performed using the Pubmed.

Results

Using behavioral sensitization, conditioned place preference and drug self-administration as behavioral models, a large number of studies have shown that local or systemic administration of PDE4 inhibitors reduce drug intake and/or drug seeking for psychostimulants, alcohol, and opioids in rats or mice.

Conclusions

Preclinical studies suggest that PDE4 could be a therapeutic target for several classes of substance use disorder. We conclude by identifying opportunities for the development of subtype-selective PDE4 inhibitors that may reduce addiction liability and minimize the side effects that limit the clinical potential of non-selective PDE4 inhibitors. Several PDE4 inhibitors have been clinically approved for other diseases. There is a promising possibility to repurpose these PDE4 inhibitors for the treatment of drug addiction as they are safe and well-tolerated in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberini C M (2009). Transcription factors in long-term memory and synaptic plasticity. Physiol Rev, 89(1): 121–145

    Article  CAS  PubMed  Google Scholar 

  • Allain F, Minogianis E A, Roberts D C, Samaha A N (2015). How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neurosci Biobehav Rev, 56: 166–179

    Article  PubMed  Google Scholar 

  • Anderson S M, Pierce R C (2005). Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther, 106(3): 389–403

    Article  CAS  PubMed  Google Scholar 

  • Bardo MT, Bevins R A (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl), 153(1): 31–43

    Article  CAS  Google Scholar 

  • Beardsley P M, Hauser K F (2014). Glial modulators as potential treatments of psychostimulant abuse. Adv Pharmacol, 69: 1–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beardsley P M, Shelton K L, Hendrick E, Johnson KW (2010). The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime-and stress-induced methamphetamine relapse. Eur J Pharmacol, 637(1–3): 102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell R L, Lopez M F, Cui C, Egli M, Johnson K W, Franklin K M, Becker H C (2015). Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol, 20(1): 38–42

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre-y-Hernández M, Schratzer M (1988). Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol, 3(3): 245–253

    Article  CAS  PubMed  Google Scholar 

  • Blednov Y A, Benavidez J M, Black M, Harris R A (2014). Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci, 8: 129

    Article  PubMed  PubMed Central  Google Scholar 

  • Britt J P, Benaliouad F, McDevitt R A, Stuber G D, Wise R A, Bonci A (2012). Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron, 76(4): 790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlezon W A Jr, Chartoff E H (2007). Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc, 2(11): 2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Cherry J A, Davis R L (1999). Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol, 407(2): 287–301

    Article  CAS  PubMed  Google Scholar 

  • Conrad K L, Louderback K M, Milano E J, Winder D G (2013). Assessment of the impact of pattern of cocaine dosing schedule during conditioning and reconditioning on magnitude of cocaine CPP, extinction, and reinstatement. Psychopharmacology (Berl), 227(1): 109–116

    Article  CAS  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park J Y, Jin C (2003). Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem, 278(8): 5493–5496

    Article  CAS  PubMed  Google Scholar 

  • Cooper D M (2005). Compartmentalization of adenylate cyclase and cAMP signalling. Biochem Soc Trans, 33: 1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Crabbe J C (2014). Rodent models of genetic contributions to motivation to abuse alcohol. Nebr Symp Motiv, 61: 5–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamant Z, Spina D (2011). PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther, 24(4): 353–360

    Article  CAS  PubMed  Google Scholar 

  • Fleischhacker W W H, Hinterhuber H, Bauer H, Pflug B, Berner P, Simhandl C, Wolf R, Gerlach W, Jaklitsch H, Sastre-y-Hernández M, Schmeding-Wiegel H, Sperner-Unterweger B, Voet B, Schubert H (1992). A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology, 26(1–2): 59–64

    Article  CAS  PubMed  Google Scholar 

  • Franklin K M, Hauser S R, Lasek A W, McClintick J, Ding Z M, McBride W J, Bell R L (2015). Reduction of alcohol drinking of alcohol-preferring (P) and high-alcohol drinking (HAD1) rats by targeting phosphodiesterase-4 (PDE4). Psychopharmacology (Berl), 232(13): 2251–2262

    Article  CAS  Google Scholar 

  • Gisondi P, Girolomoni G (2016). Apremilast in the therapy of moderateto-severe chronic plaque psoriasis. Drug Des Devel Ther, 10: 1763–1770

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Cuello A, Sánchez L, Hernández J, Teresa Castells M, Victoria Milanés M, Laorden M L (2007). Phosphodiesterase 4 inhibitors, rolipram and diazepam block the adaptive changes observed during morphine withdrawal in the heart. Eur J Pharmacol, 570(1–3): 1–9

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A M (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci, 13(7): 244–254

    Article  CAS  PubMed  Google Scholar 

  • Graybiel A M (2000). The basal ganglia. Curr Biol, 10(14): R509–R511

    Article  CAS  PubMed  Google Scholar 

  • Grimm J W, Fyall A M, Osincup D P (2005). Incubation of sucrose craving: effects of reduced training and sucrose pre-loading. Physiol Behav, 84(1): 73–79

    Article  CAS  PubMed  Google Scholar 

  • Grimm J W, Hope B T, Wise R A, Shaham Y (2001). Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature, 412(6843): 141–142

    CAS  PubMed  Google Scholar 

  • Hagen T J, Mo X, Burgin A B, Fox D 3rd, Zhang Z, Gurney ME (2014). Discovery of triazines as selective PDE4B versus PDE4D inhibitors. Bioorg Med Chem Lett, 24(16): 4031–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdy M M, Mamiya T, Noda Y, Sayed M, Assi A A, Gomaa A, Yamada K, Nabeshima T (2001). A selective phosphodiesterase IV inhibitor, rolipram blocks both withdrawal behavioral manifestations, and c-Fos protein expression in morphine dependent mice. Behav Brain Res, 118(1): 85–93

    Article  CAS  PubMed  Google Scholar 

  • Hansen R T 3rd, Zhang H T (2015). Phosphodiesterase-4 modulation as a potential therapeutic for cognitive loss in pathological and nonpathological aging: possibilities and pitfalls. Curr Pharm Des, 21(3): 291–302

    CAS  PubMed  Google Scholar 

  • Hiroi N, Nestler E J (1998). Nuclear memory: gene transcription and behavior. Adv Pharmacol, 42: 1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Horn C C, Kimball B A, Wang H, Kaus J, Dienel S, Nagy A, Gathright G R, Yates B J, Andrews P L (2013). Why can’t rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS ONE, 8(4): e60537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett A C (2005). Cannabinoid receptor signaling. Handb Exp Pharmacol, (168): 53–79

    Article  CAS  Google Scholar 

  • Hu W, Lu T, Chen A, Huang Y, Hansen R, Chandler L J, Zhang H T (2011). Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology (Berl), 218(2): 331–339

    Article  CAS  Google Scholar 

  • Ikemoto S, Bonci A (2014). Neurocircuitry of drug reward. Neuropharmacology, 76 Pt B: 329–341

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Anderson K L (2012). Changes in the magnitude of drugunconditioned stimulus during conditioning modulate cocaineinduced place preference in mice. Addict Biol, 17(4): 706–716

    Article  CAS  PubMed  Google Scholar 

  • Iyo M, Bi Y, Hashimoto K, Inada T, Fukui S (1996). Prevention of methamphetamine-induced behavioral sensitization in rats by a cyclic AMP phosphodiesterase inhibitor, rolipram. Eur J Pharmacol, 312(2): 163–170

    Article  CAS  PubMed  Google Scholar 

  • Janes A C, Kantak K M, Cherry J A (2009). The involvement of type IV phosphodiesterases in cocaine-induced sensitization and subsequent pERK expression in the mouse nucleus accumbens. Psychopharmacology (Berl), 206(2): 177–185

    Article  CAS  Google Scholar 

  • Johansson E M, Reyes-Irisarri E, Mengod G (2012). Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci Lett, 525(1): 1–6

    Article  CAS  PubMed  Google Scholar 

  • Kauer J A (2004). Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol, 66(1): 447–475

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Tokumura M, Itoh T, Inoue O, Abe K (2006). Lack of cyclic AMP-specific phosphodiesterase 4 activation during naloxoneprecipitated morphine withdrawal in rats. Neurosci Lett, 404(1–2): 107–111

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Ohi Y, Haji A (2015). Blockade of phosphodiesterase 4 reverses morphine-induced ventilatory disturbance without loss of analgesia. Life Sci, 127: 32–38

    Article  CAS  PubMed  Google Scholar 

  • Knapp C M, Foye M M, Ciraulo D A, Kornetsky C (1999). The type IV phosphodiesterase inhibitors, Ro 20-1724 and rolipram, block the initiation of cocaine self-administration. Pharmacol Biochem Behav, 62(1): 151–158

    Article  CAS  PubMed  Google Scholar 

  • Knapp C M, Lee K, Foye M, Ciraulo D A, Kornetsky C (2001). Additive effects of intra-accumbens infusion of the cAMP-specific phosphodiesterase inhibitor, rolipram and cocaine on brain stimulation reward. Life Sci, 69(14): 1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa M, Snyder G L, Shuto T, Fukuda A, Yanagawa Y, Benavides D R, Nairn A C, Bibb J A, Greengard P, Nishi A (2012). Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/ PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology (Berl), 219(4): 1065–1079

    Article  CAS  Google Scholar 

  • Lai M, Zhu H, Sun A, Zhuang D, Fu D, Chen W, Zhang H T, Zhou W (2014). The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats. Int J Neuropsychopharmacol, 17(9): 1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Lakics V, Karran E H, Boess F G (2010). Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 59(6): 367–374

    Article  CAS  PubMed  Google Scholar 

  • Lamontagne S, Meadows E, Luk P, Normandin D, Muise E, Boulet L, Pon D J, Robichaud A, Robertson G S, Metters K M, Nantel F (2001). Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res, 920(1–2): 84–96

    Article  CAS  PubMed  Google Scholar 

  • Liddie S, Anderson K L, Paz A, Itzhak Y (2012). The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol, 26(10): 1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Lim Y W, Meyer N P, Shah A S, Budde M D, Stemper B D, Olsen C M (2015). Voluntary alcohol intake following blast exposure in a rat model of mild traumatic brain injury. PLoS ONE, 10(4): e0125130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Liu Y, Zhong P, Wilkinson B, Qi J, Olsen C M, Bayer K U, Liu Q S (2014). CaMKII activity in the ventral tegmental area gates cocaine-induced synaptic plasticity in the nucleus accumbens. Neuropsychopharmacology, 39(4): 989–999

    Article  CAS  PubMed  Google Scholar 

  • Logrip M L (2015). Phosphodiesterase regulation of alcohol drinking in rodents. Alcohol, 49(8): 795–802

    Article  CAS  PubMed  Google Scholar 

  • Logrip M L, Vendruscolo L F, Schlosburg J E, Koob G F, Zorrilla E P (2014). Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats. Neuropsychopharmacology, 39(7): 1722–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Grimm J W, Hope B T, Shaham Y (2004). Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology, 47(Suppl 1): 214–226

    Article  CAS  PubMed  Google Scholar 

  • Lugnier C (2006). Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther, 109(3): 366–398

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie S J, Houslay M D (2000). Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J, 347(Pt 2): 571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamiya T, Noda Y, Ren X, Hamdy M, Furukawa S, Kameyama T, Yamada K, Nabeshima T (2001). Involvement of cyclic AMP systems in morphine physical dependence in mice: prevention of development of morphine dependence by rolipram, a phosphodiesterase 4 inhibitor. Br J Pharmacol, 132(5): 1111–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantsch J R, Baker D A, Funk D, Lê A D, Shaham Y (2016). Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology, 41(1): 335–356

    Article  CAS  PubMed  Google Scholar 

  • McGirr A, Lipina T V, Mun H S, Georgiou J, Al-Amri A H, Ng E, Zhai D, Elliott C, Cameron R T, Mullins J G, Liu F, Baillie G S, Clapcote S J, Roder J C (2016). Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition. Neuropsychopharmacology, 41(4): 1080–1092

    Article  CAS  PubMed  Google Scholar 

  • Mori F, Pérez-Torres S, De Caro R, Porzionato A, Macchi V, Beleta J, Gavaldà A, Palacios J M, Mengod G (2010). The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat, 40(1): 36–42

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Baba J, Ichimaru Y, Suzuki T (2000). Effects of rolipram, a selective inhibitor of phosphodiesterase 4, on hyperlocomotion induced by several abused drugs in mice. Jpn J Pharmacol, 83(2): 113–118

    Article  CAS  PubMed  Google Scholar 

  • Muelbl M J, Nawarawong N N, Clancy P T, Nettesheim C E, Lim Y W, Olsen C M (2016). Responses to drugs of abuse and non-drug rewards in leptin deficient ob/ob mice. Psychopharmacology (Berl), 233(14): 2799–2811

    Article  CAS  Google Scholar 

  • Mulhall A M, Droege C A, Ernst N E, Panos R J, Zafar M A (2015). Phosphodiesterase 4 inhibitors for the treatment of chronic obstructive pulmonary disease: a review of current and developing drugs. Expert Opin Investig Drugs, 24(12): 1597–1611

    Article  CAS  PubMed  Google Scholar 

  • Muschamp J W, Carlezon W A Jr (2013). Roles of nucleus accumbens CREB and dynorphin in dysregulation of motivation. Cold Spring Harb Perspect Med, 3(2): a012005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, Nagumo H, Kodama T, Takemura M, Ohtsuka Y, Nakamura J, Tsujita R, Kawasaki K, Yokoi H, Kawanishi M (2009). Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett, 19(12): 3174–3176

    Article  CAS  PubMed  Google Scholar 

  • Negus S S, Miller L L (2014). Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol Rev, 66(3): 869–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler E J (2015). Reflections on: “A general role for adaptations in GProteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res

    Google Scholar 

  • Nishi A, Kuroiwa M, Miller D B, O’Callaghan J P, Bateup H S, Shuto T, Sotogaku N, Fukuda T, Heintz N, Greengard P, Snyder G L (2008). Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci, 28(42): 10460–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez C, González-Cuello A, Sánchez L, Vargas M L, Milanés M V, Laorden M L (2009). Effects of rolipram and diazepam on the adaptive changes induced by morphine withdrawal in the hypothalamic paraventricular nucleus. Eur J Pharmacol, 620(1–3): 1–8

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell J M, Zhang H T (2004). Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci, 25(3): 158–163

    Article  PubMed  CAS  Google Scholar 

  • Olsen C M, Childs D S, Stanwood G D, Winder D G (2010). Operant sensation seeking requires metabotropic glutamate receptor 5 (mGluR5). PLoS ONE, 5(11): e15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen C M, Winder D G (2006). A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl), 187(1): 13–21

    Article  CAS  Google Scholar 

  • Page C P, Spina D (2012). Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol, 12(3): 275–286

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Hillard C J, Liu Q S (2008). D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci, 28(52): 14018–14030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan B, Hillard C J, Liu Q S (2008). Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci, 28(6): 1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Zhong P, Sun D, Liu Q S (2011). Extracellular signal-regulated kinase signaling in the ventral tegmental area mediates cocaineinduced synaptic plasticity and rewarding effects. J Neurosci, 31(31): 11244–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Cadahía B, Drobic B, Davie J R (2011). Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol, 89(1): 61–73

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Torres S, Miró X, Palacios J M, Cortés R, Puigdoménech P, Mengod G (2000). Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat, 20(3–4): 349–374

    PubMed  Google Scholar 

  • Pierce R C, Kalivas P W (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev, 25(2): 192–216

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Menniti F S, Zhang H T, Conti M (2013). PDE4 as a target for cognition enhancement. Expert Opin Ther Targets, 17(9): 1011–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robichaud A, Stamatiou P B, Jin S L, Lachance N, MacDonald D, Laliberté F, Liu S, Huang Z, Conti M, Chan C C (2002). Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptormediated anesthesia, a behavioral correlate of emesis. J Clin Invest, 110(7): 1045–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson T E, Berridge K C (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev, 18(3): 247–291

    Article  CAS  PubMed  Google Scholar 

  • Robinson T E, Berridge K C (2008). Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci, 363(1507): 3137–3146

    PubMed  Google Scholar 

  • Rodd Z A, Bell R L, Sable H J, Murphy J M, McBride W J (2004). Recent advances in animal models of alcohol craving and relapse. Pharmacol Biochem Behav, 79(3): 439–450

    Article  CAS  PubMed  Google Scholar 

  • Schroeder J A, Ruta J D, Gordon J S, Rodrigues A S, Foote C C (2012). The phosphodiesterase inhibitor isobutylmethylxanthine attenuates behavioral sensitization to cocaine. Behav Pharmacol, 23(3): 310–314

    Article  CAS  PubMed  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl), 168(1–2): 3–20

    Article  CAS  Google Scholar 

  • Siuciak J A, McCarthy S A, Chapin D S, Martin A N (2008). Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl), 197(1): 115–126

    Article  CAS  Google Scholar 

  • Snider S E, Hendrick E S, Beardsley P M (2013). Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur J Pharmacol, 701(1–3): 124–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider S E, Vunck S A, van den Oord E J, Adkins D E, McClay J L, Beardsley P M (2012). The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice. Eur J Pharmacol, 679(1–3): 75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolerman I P, Childs E, Ford M M, Grant K A (2011). Role of training dose in drug discrimination: a review. Behav Pharmacol, 22(5–6): 415–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun A, Zhuang D, Zhu H, Lai M, Chen W, Liu H, Zhang F, Zhou W (2015). Decrease of phosphorylated CREB and ERK in nucleus accumbens is associated with the incubation of heroin seeking induced by cues after withdrawal. Neurosci Lett, 591: 166–170

    Article  CAS  PubMed  Google Scholar 

  • Thompson B E, Sachs B D, Kantak K M, Cherry J A (2004). The Type IV phosphodiesterase inhibitor rolipram interferes with drug-induced conditioned place preference but not immediate early gene induction in mice. Eur J Neurosci, 19(9): 2561–2568

    Article  PubMed  Google Scholar 

  • Thomsen M, Caine S B (2005). Chronic intravenous drug selfadministration in rats and mice. Curr Protoc Neurosci, 32:9.20: 9.20.1–9.20.40

    Google Scholar 

  • Todd T P, Vurbic D, Bouton M E (2014). Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiol Learn Mem, 108: 52–64

    Article  PubMed  Google Scholar 

  • Tzschentke T M (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol, 12(3–4): 227–462

    Article  CAS  PubMed  Google Scholar 

  • Wang Z Z, Zhang Y, Zhang H T, Li Y F (2015). Phosphodiesterase: an interface connecting cognitive deficits to neuropsychiatric and neurodegenerative diseases. Curr Pharm Des, 21(3): 303–316

    Article  CAS  PubMed  Google Scholar 

  • Wen R T, Feng W Y, Liang J H, Zhang H T (2015). Role of phosphodiesterase 4-mediated cyclic AMP signaling in pharmacotherapy for substance dependence. Curr Pharm Des, 21(3): 355–364

    Article  CAS  PubMed  Google Scholar 

  • Wen R T, Zhang M, Qin WJ, Liu Q, Wang WP, Lawrence A J, Zhang H T, Liang J H (2012). The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcoholpreferring Fawn-Hooded rats. Alcohol Clin Exp Res, 36(12): 2157–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Nitta A, Mizuno T, Nakajima A, Yamada K, Nabeshima T (2006). Discriminative-stimulus effects of methamphetamine and morphine in rats are attenuated by cAMP-related compounds. Behav Brain Res, 173(1): 39–46

    Article  CAS  PubMed  Google Scholar 

  • Young R (2009). Drug Discrimination. In: Buccafusco J J, editor. Source Methods of Behavior Analysis in Neuroscience. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis

    Google Scholar 

  • Zhang H T (2009). Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des, 15(14): 1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Zhang H T, Huang Y, Masood A, Stolinski L R, Li Y, Zhang L, Dlaboga D, Jin S L, Conti M, O’Donnell J M (2008). Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology, 33(7): 1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Zhong P, Wang W, Yu F, Nazari M, Liu X, Liu Q S (2012). Phosphodiesterase 4 inhibition impairs cocaine-induced inhibitory synaptic plasticity and conditioned place preference. Neuropsychopharmacology, 37(11): 2377–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher M. Olsen or Qing-Song Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, C.M., Liu, QS. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities. Front. Biol. 11, 376–386 (2016). https://doi.org/10.1007/s11515-016-1424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1424-0

Keywords

Navigation