Skip to main content

Current Perspectives on Selective Dopamine D3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders

  • Chapter
  • First Online:
Therapeutic Applications of Dopamine D3 Receptor Function

Abstract

Over three decades of evidence indicate that dopamine (DA) D3 receptors (D3R) are involved in the control of drug-seeking behavior and may play an important role in the pathophysiology of substance use disorders (SUD). The expectation that a selective D3R antagonist/partial agonist would be efficacious for the treatment of SUD is based on the following key observations. First, D3R are distributed in strategic areas belonging to the mesolimbic DA system such as the ventral striatum, midbrain, and ventral pallidum, which have been associated with behaviors controlled by the presentation of drug-associated cues. Second, repeated exposure to drugs of abuse produces neuroadaptations in the D3R system. Third, the synthesis and characterization of highly potent and selective D3R antagonists/partial agonists have further strengthened the role of the D3R in SUD. Based on extensive preclinical and preliminary clinical evidence, the D3R shows promise as a target for the development of pharmacotherapies for SUD as reflected by their potential to (1) regulate the motivation to self-administer drugs and (2) disrupt the responsiveness to drug-associated stimuli that play a key role in reinstatement of drug-seeking behavior triggered by re-exposure to the drug itself, drug-associated environmental cues, or stress. The availability of PET ligands to assess clinically relevant receptor occupancy by selective D3R antagonists/partial agonists, the definition of reliable dosing, and the prospect of using human laboratory models may further guide the design of clinical proof of concept studies. Pivotal clinical trials for more rapid progression of this target toward regulatory approval are urgently required. Finally, the discovery that highly selective D3R antagonists, such as R-VK4-116 and R-VK4-40, do not adversely affect peripheral biometrics or cardiovascular effects alone or in the presence of oxycodone or cocaine suggests that this class of drugs has great potential in safely treating psychostimulant and/or opioid use disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadie C, Pasternak GW, Aicher SA (2001) Presynaptic localization of the carboxy-terminus epitopes of the mu opioid receptor splice variants MOR-1C and MOR-1D in the superficial laminae of the rat spinal cord. Neuroscience 106:833–842

    Article  CAS  Google Scholar 

  • Ahmad FB, Rossen LM, Sutton P (2021) Provisional drug overdose death counts. National Center for Health Statistics. https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm

    Google Scholar 

  • Altier N, Stewart J (1998) Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmacol Exp Ther 285:208–215

    CAS  Google Scholar 

  • Alves BB, Oliveira GP, Moreira Neto MG, Fiorilli RB, Cestario E (2019) Use of atypical antipsychotics and risk of hypertension: a case report and review literature. SAGE Open Med Case Rep 7:2050313X19841825

    Google Scholar 

  • Angarita GA, Hadizadeh H, Cerdena I, Potenza MN (2021a) Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 22:1669–1683

    Article  CAS  Google Scholar 

  • Angarita GA, Hadizadeh H, Cerdena I, Potenza MN (2021b) Can pharmacotherapy improve treatment outcomes in people with co-occurring major depressive and cocaine use disorders? Expert Opin Pharmacother 22(13):1669–1683

    Article  CAS  Google Scholar 

  • Appel NM, Li SH, Holmes TH, Acri JB (2015) Dopamine D3 receptor antagonist (GSK598809) potentiates the hypertensive effects of cocaine in conscious, freely-moving dogs. J Pharmacol Exp Ther 354:484–492

    Article  CAS  Google Scholar 

  • Araki KY, Sims JR, Bhide PG (2007) Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 1156:31–45

    Article  CAS  Google Scholar 

  • Asan E (1997) Ultrastructural features of tyrosine-hydroxylase-immunoreactive afferents and their targets in the rat amygdala. Cell Tissue Res 288:449–469

    Article  CAS  Google Scholar 

  • Avalos-Fuentes A, Albarran-Bravo S, Loya-Lopez S, Cortes H, Recillas-Morales S, Magana JJ, Paz-Bermudez F, Rangel-Barajas C, Aceves J, Erlij D, Floran B (2015) Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its ca(2+) dependent modulation by CaMKII and calmodulin in striatonigral projections of the rat. Neurobiol Dis 74:336–346

    Article  CAS  Google Scholar 

  • Azadfard M, Huecker MR, Leaming JM (2021) Opioid addiction. StatPearls, Treasure Island

    Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR review 13. Br J Pharmacol 172:1–23

    Article  CAS  Google Scholar 

  • Bergman J, Roof RA, Furman CA, Conroy JL, Mello NK, Sibley DR, Skolnick P (2013) Modification of cocaine self-administration by buspirone (buspar(R)): potential involvement of D3 and D4 dopamine receptors. Int J Neuropsychopharmacol 16:445–458

    Article  CAS  Google Scholar 

  • Berry AS, White RL 3rd, Furman DJ, Naskolnakorn JR, Shah VD, D'Esposito M, Jagust WJ (2019) Dopaminergic mechanisms underlying normal variation in trait anxiety. J Neurosci 39:2735–2744

    Article  CAS  Google Scholar 

  • Blum K, Cadet JL, Gold MS (2021a) Psychostimulant use disorder emphasizing methamphetamine and the opioid -dopamine connection: digging out of a hypodopaminergic ditch. J Neurol Sci 420:117252

    Article  CAS  Google Scholar 

  • Blum K, Khalsa J, Cadet JL, Baron D, Bowirrat A, Boyett B, Lott L, Brewer R, Gondre-Lewis M, Bunt G, Kazmi S, Gold MS (2021b) Cannabis-induced hypodopaminergic anhedonia and cognitive decline in humans: embracing putative induction of dopamine homeostasis. Front Psych 12:623403

    Article  Google Scholar 

  • Bodei S, Arrighi N, Spano P, Sigala S (2009) Should we be cautious on the use of commercially available antibodies to dopamine receptors? Naunyn Schmiedeberg’s Arch Pharmacol 379:413–415

    Article  CAS  Google Scholar 

  • Boileau I, Payer D, Rusjan PM, Houle S, Tong J, McCluskey T, Wilson AA, Kish SJ (2016) Heightened dopaminergic response to amphetamine at the D3 dopamine receptor in methamphetamine users. Neuropsychopharmacology 41:2994–3002

    Article  CAS  Google Scholar 

  • Bonifazi A, Battiti FO, Sanchez J, Zaidi SA, Bow E, Makarova M, Cao J, Shaik AB, Sulima A, Rice KC, Katritch V, Canals M, Lane JR, Newman AH (2021) Novel dual-target mu-opioid receptor and dopamine D3 receptor ligands as potential nonaddictive pharmacotherapeutics for pain management. J Med Chem 64:7778–7808

    Article  CAS  Google Scholar 

  • Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC (1997) Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 94:3363–3367

    Article  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  Google Scholar 

  • Bressan RA, Crippa JA (2005) The role of dopamine in reward and pleasure behaviour – review of data from preclinical research. Acta Psychiatr Scand Suppl (427):14–21

    Google Scholar 

  • Brewer KL, Baran CA, Whitfield BR, Jensen AM, Clemens S (2014) Dopamine D3 receptor dysfunction prevents anti-nociceptive effects of morphine in the spinal cord. Front Neural Circuits 8:62

    Article  Google Scholar 

  • Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E, Allen V, Scheibal D, London ED, Monterosso JR, Tiffany ST, Korb A, Gan JJ, Cohen MS (2007) Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry 62:642–651

    Article  CAS  Google Scholar 

  • Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336:783–787

    Article  CAS  Google Scholar 

  • Buydens-Branchey L, Branchey M, Reel-Brander C (2005) Efficacy of buspirone in the treatment of opioid withdrawal. J Clin Psychopharmacol 25:230–236

    Article  CAS  Google Scholar 

  • Cai JX, Arnsten AF (1997) Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 283:183–189

    CAS  Google Scholar 

  • Campbell RR, Lobo MK (2021) DRD3-dependent plasticity within the VP drives subcircuit activity critical for cocaine seeking. Neuron 109:2043–2044

    Article  CAS  Google Scholar 

  • Chander G, McCaul ME (2003) Co-occurring psychiatric disorders in women with addictions. Obstet Gynecol Clin N Am 30:469–481

    Article  Google Scholar 

  • Ciccarone D (2021) The rise of illicit fentanyls, stimulants and the fourth wave of the opioid overdose crisis. Curr Opin Psychiatry 34:344–350

    Article  Google Scholar 

  • Citrome L (2013) Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol 9:193–206

    Article  CAS  Google Scholar 

  • Clarkson RL, Liptak AT, Gee SM, Sohal VS, Bender KJ (2017) D3 receptors regulate excitability in a unique class of prefrontal pyramidal cells. J Neurosci 37:5846–5860

    Article  CAS  Google Scholar 

  • Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. J Neurosci 24:11337–11345

    Article  CAS  Google Scholar 

  • Cole DM, Beckmann CF, Searle GE, Plisson C, Tziortzi AC, Nichols TE, Gunn RN, Matthews PM, Rabiner EA, Beaver JD (2012) Orbitofrontal connectivity with resting-state networks is associated with midbrain dopamine D3 receptor availability. Cereb Cortex 22:2784–2793

    Article  Google Scholar 

  • Collo G, Bono F, Cavalleri L, Plebani L, Merlo Pich E, Millan MJ, Spano PF, Missale C (2012) Pre-synaptic dopamine D(3) receptor mediates cocaine-induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. J Neurochem 120:765–778

    Article  CAS  Google Scholar 

  • Compton WM, Thomas YF, Stinson FS, Grant BF (2007) Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry 64:566–576

    Article  Google Scholar 

  • Compton WM, Valentino RJ, DuPont RL (2021) Polysubstance use in the U.S. opioid crisis. Mol Psychiatry 26:41–50

    Article  Google Scholar 

  • Contreras M, Ceric F, Torrealba F (2007) Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318:655–658

    Article  CAS  Google Scholar 

  • Conway KP, Compton W, Stinson FS, Grant BF (2006) Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 67:247–257

    Article  CAS  Google Scholar 

  • Cook CD, Barrett AC, Syvanthong C, Picker MJ (2000) The dopamine D3/2 agonist 7-OH-DPAT attenuates the development of morphine tolerance but not physical dependence in rats. Psychopharmacology 152:93–104

    Article  CAS  Google Scholar 

  • Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen HU (2017) Anxiety disorders. Nat Rev Dis Primers 3:17024

    Article  Google Scholar 

  • Creed M, Ntamati NR, Chandra R, Lobo MK, Luscher C (2016) Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 92:214–226

    Article  CAS  Google Scholar 

  • Cuevas S, Villar VA, Jose PA, Armando I (2013) Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci 14:17553–17572

    Article  Google Scholar 

  • Dai WL, Xiong F, Yan B, Cao ZY, Liu WT, Liu JH, Yu BY (2016) Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord. Sci Rep 6:38746

    Article  CAS  Google Scholar 

  • de Guglielmo G, Kallupi M, Sedighim S, Newman AH, George O (2019) Dopamine D3 receptor antagonism reverses the escalation of oxycodone self-administration and decreases withdrawal-induced hyperalgesia and irritability-like behavior in oxycodone-dependent heterogeneous stock rats. Front Behav Neurosci 13:292

    Article  Google Scholar 

  • Dedic N, Kuhne C, Jakovcevski M, Hartmann J, Genewsky AJ, Gomes KS, Anderzhanova E, Pohlmann ML, Chang S, Kolarz A, Vogl AM, Dine J, Metzger MW, Schmid B, Almada RC, Ressler KJ, Wotjak CT, Grinevich V, Chen A, Schmidt MV, Wurst W, Refojo D, Deussing JM (2018) Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nat Neurosci 21:803–807

    Article  CAS  Google Scholar 

  • Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77

    Article  CAS  Google Scholar 

  • Diaz J, Levesque D, Griffon N, Lammers CH, Martres MP, Sokoloff P, Schwartz JC (1994) Opposing roles for dopamine D2 and D3 receptors on neurotensin mRNA expression in nucleus accumbens. Eur J Neurosci 6:1384–1387

    Article  CAS  Google Scholar 

  • Diaz J, Levesque D, Lammers CH, Griffon N, Martres MP, Schwartz JC, Sokoloff P (1995) Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 65:731–745

    Article  CAS  Google Scholar 

  • Diaz J, Ridray S, Mignon V, Griffon N, Schwartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17:4282–4292

    Article  CAS  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    Article  CAS  Google Scholar 

  • Doot RK, Dubroff JG, Labban KJ, Mach RH (2019) Selectivity of probes for PET imaging of dopamine D3 receptors. Neurosci Lett 691:18–25

    Article  CAS  Google Scholar 

  • Due DL, Huettel SA, Hall WG, Rubin DC (2002) Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry 159:954–960

    Article  Google Scholar 

  • Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J (2008) Pharmacotherapy of methamphetamine addiction: an update. Subst Abus 29:31–49

    Article  Google Scholar 

  • Erritzoe D, Tziortzi A, Bargiela D, Colasanti A, Searle GE, Gunn RN, Beaver JD, Waldman A, Nutt DJ, Bani M, Merlo-Pich E, Rabiner EA, Lingford-Hughes A (2014) In vivo imaging of cerebral dopamine D3 receptors in alcoholism. Neuropsychopharmacology 39:1703–1712

    Article  CAS  Google Scholar 

  • Ewing ST, Dorcely C, Maidi R, Paker G, Schelbaum E, Ranaldi R (2021) Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduces cue-induced relapse to heroin seeking in rats. Addict Biol 26:e12988

    Article  CAS  Google Scholar 

  • Fiorentini C, Busi C, Gorruso E, Gotti C, Spano P, Missale C (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 74:59–69

    Article  CAS  Google Scholar 

  • Fiorentini C, Busi C, Spano P, Missale C (2010) Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol 10:87–92

    Article  CAS  Google Scholar 

  • Fogger SA (2019) Methamphetamine use: a new wave in the opioid crisis? J Addict Nurs 30:219–223

    Article  Google Scholar 

  • Franken IH (2003) Drug craving and addiction: integrating psychological and neuropsychopharmacological approaches. Prog Neuro-Psychopharmacol Biol Psychiatry 27:563–579

    Article  Google Scholar 

  • Freyberg Z, Sonders MS, Aguilar JI, Hiranita T, Karam CS, Flores J, Pizzo AB, Zhang Y, Farino ZJ, Chen A, Martin CA, Kopajtic TA, Fei H, Hu G, Lin YY, Mosharov EV, McCabe BD, Freyberg R, Wimalasena K, Hsin LW, Sames D, Krantz DE, Katz JL, Sulzer D, Javitch JA (2016) Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in drosophila brain. Nat Commun 7:10652

    Article  CAS  Google Scholar 

  • Fudge JL, Haber SN (2000) The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 97:479–494

    Article  CAS  Google Scholar 

  • Galaj E, Xi ZX (2021) Progress in opioid reward research: from a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 200:173072

    Article  CAS  Google Scholar 

  • Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, Bi GH, Xi ZX (2020a) Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward. J Neurosci 40:8853–8869

    Article  CAS  Google Scholar 

  • Galaj E, Newman AH, Xi ZX (2020b) Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: rationale, progress, and challenges. Neurosci Biobehav Rev 114:38–52

    Article  CAS  Google Scholar 

  • Gallezot JD, Beaver JD, Gunn RN, Nabulsi N, Weinzimmer D, Singhal T, Slifstein M, Fowles K, Ding YS, Huang Y, Laruelle M, Carson RE, Rabiner EA (2012) Affinity and selectivity of [(1)(1)C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse 66:489–500

    Article  CAS  Google Scholar 

  • Gardner EL (2000) What we have learned about addiction from animal models of drug self-administration. Am J Addict 9:285–313

    Article  CAS  Google Scholar 

  • Gaznick N, Tranel D, McNutt A, Bechara A (2014) Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine Tob Res 16:445–453

    Article  CAS  Google Scholar 

  • Gear RW, Aley KO, Levine JD (1999) Pain-induced analgesia mediated by mesolimbic reward circuits. J Neurosci 19:7175–7181

    Article  CAS  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  Google Scholar 

  • Ginovart N, Willeit M, Rusjan P, Graff A, Bloomfield PM, Houle S, Kapur S, Wilson AA (2007) Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. J Cereb Blood Flow Metab 27:857–871

    Article  CAS  Google Scholar 

  • Giros B, Martres MP, Sokoloff P, Schwartz JC (1990) Gene cloning of human dopaminergic D3 receptor and identification of its chromosome. C R Acad Sci III 311:501–508

    CAS  Google Scholar 

  • Glick SN, Klein KS, Tinsley J, Golden MR (2021) Increasing heroin-methamphetamine (goofball) use and related morbidity among Seattle area people who inject drugs. Am J Addict 30:183–191

    Article  Google Scholar 

  • Gobert A, Lejeune F, Rivet JM, Cistarelli L, Millan MJ (1996) Dopamine D3 (auto) receptors inhibit dopamine release in the frontal cortex of freely moving rats in vivo. J Neurochem 66:2209–2212

    Article  CAS  Google Scholar 

  • Gomaa AA, Mohamed LH, Ahmed HN (1989) Modification of morphine-induced analgesia, tolerance and dependence by bromocriptine. Eur J Pharmacol 170:129–135

    Article  CAS  Google Scholar 

  • Gomes T, Tadrous M, Mamdani MM, Paterson JM, Juurlink DN (2018) The burden of opioid-related mortality in the United States. JAMA Netw Open 1:e180217

    Article  Google Scholar 

  • Graff-Guerrero A, Willeit M, Ginovart N, Mamo D, Mizrahi R, Rusjan P, Vitcu I, Seeman P, Wilson AA, Kapur S (2008) Brain region binding of the D2/3 agonist [11C]-(+)-PHNO and the D2/3 antagonist [11C]raclopride in healthy humans. Hum Brain Mapp 29:400–410

    Article  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 93:12040–12045

    Article  CAS  Google Scholar 

  • Guerrero-Bautista R, Franco-Garcia A, Hidalgo JM, Fernandez-Gomez FJ, Ribeiro Do Couto B, Milanes MV, Nunez C (2021) Distinct regulation of dopamine D3 receptor in the basolateral amygdala and dentate gyrus during the reinstatement of cocaine CPP induced by drug priming and social stress. Int J Mol Sci 22:3100

    Article  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80

    Article  CAS  Google Scholar 

  • Gurevich EV, Himes JW, Joyce JN (1999) Developmental regulation of expression of the D3 dopamine receptor in rat nucleus accumbens and islands of Calleja. J Pharmacol Exp Ther 289:587–598

    CAS  Google Scholar 

  • Gyertyan I, Kiss B, Gal K, Laszlovszky I, Horvath A, Gemesi LI, Saghy K, Pasztor G, Zajer M, Kapas M, Csongor EA, Domany G, Tihanyi K, Szombathelyi Z (2007) Effects of RGH-237 [N-{4-[4-(3-aminocarbonyl-phenyl)-piperazin-1-yl]-butyl}-4-bromo-benzamide], an orally active, selective dopamine D(3) receptor partial agonist in animal models of cocaine abuse. J Pharmacol Exp Ther 320:1268–1278

    Article  CAS  Google Scholar 

  • Hall H, Halldin C, Dijkstra D, Wikstrom H, Wise LD, Pugsley TA, Sokoloff P, Pauli S, Farde L, Sedvall G (1996) Autoradiographic localisation of D3-dopamine receptors in the human brain using the selective D3-dopamine receptor agonist (+)-[3H]PD 128907. Psychopharmacology 128:240–247

    Article  CAS  Google Scholar 

  • He M, Shippenberg TS (2000) Strain differences in basal and cocaine-evoked dopamine dynamics in mouse striatum. J Pharmacol Exp Ther 293:121–127

    CAS  Google Scholar 

  • Heidbreder CA, Newman AH (2010) Current perspectives on selective dopamine D(3) receptor antagonists as pharmacotherapeutics for addictions and related disorders. Ann N Y Acad Sci 1187:4–34

    Article  CAS  Google Scholar 

  • Heinsbroek JA, Bobadilla AC, Dereschewitz E, Assali A, Chalhoub RM, Cowan CW, Kalivas PW (2020) Opposing regulation of cocaine seeking by glutamate and GABA neurons in the ventral pallidum. Cell Rep 30:2018–2027.e2013

    Article  CAS  Google Scholar 

  • Hellem TL, Lundberg KJ, Renshaw PF (2015) A review of treatment options for co-occurring methamphetamine use disorders and depression. J Addict Nurs 26:14–23; quiz E11

    Article  Google Scholar 

  • Herroelen L, De Backer JP, Wilczak N, Flamez A, Vauquelin G, De Keyser J (1994) Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin. Brain Res 648:222–228

    Article  CAS  Google Scholar 

  • Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G (2021) Psychostimulant use disorder, an unmet therapeutic goal: can modafinil narrow the gap? Front Neurosci 15:656475

    Article  Google Scholar 

  • Hikida T, Yawata S, Yamaguchi T, Danjo T, Sasaoka T, Wang Y, Nakanishi S (2013) Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc Natl Acad Sci U S A 110:342–347

    Article  CAS  Google Scholar 

  • Huang M, He W, Kiss B, Farkas B, Adham N, Meltzer HY (2019) The role of dopamine D3 receptor partial agonism in cariprazine-induced neurotransmitter efflux in rat hippocampus and nucleus accumbens. J Pharmacol Exp Ther 371:517–525

    Article  CAS  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800

    Article  CAS  Google Scholar 

  • John WS, Zhu H, Mannelli P, Subramaniam GA, Schwartz RP, McNeely J, Wu LT (2019) Prevalence and patterns of opioid misuse and opioid use disorder among primary care patients who use tobacco. Drug Alcohol Depend 194:468–475

    Article  Google Scholar 

  • Jones CM, Einstein EB, Compton WM (2018) Changes in synthetic opioid involvement in drug overdose deaths in the United States, 2010-2016. JAMA 319:1819–1821

    Article  Google Scholar 

  • Jones CM, Bekheet F, Park JN, Alexander GC (2020) The evolving overdose epidemic: synthetic opioids and rising stimulant-related harms. Epidemiol Rev 42:154–166

    Article  Google Scholar 

  • Jordan CJ, Humburg B, Rice M, Bi GH, You ZB, Shaik AB, Cao J, Bonifazi A, Gadiano A, Rais R, Slusher B, Newman AH, Xi ZX (2019a) The highly selective dopamine D3R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology 158:107597

    Article  CAS  Google Scholar 

  • Jordan CJ, Humburg BA, Thorndike EB, Shaik AB, Xi ZX, Baumann MH, Newman AH, Schindler CW (2019b) Newly developed dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate cardiovascular effects of cocaine or oxycodone in rats. J Pharmacol Exp Ther 371:602–614

    Article  CAS  Google Scholar 

  • Jordan CJ, He Y, Bi GH, You ZB, Cao J, Xi ZX, Newman AH (2020) (+/−)VK4-40, a novel dopamine D3 receptor partial agonist, attenuates cocaine reward and relapse in rodents. Br J Pharmacol 177:4796–4807

    Article  CAS  Google Scholar 

  • Jose PA, Drago J, Accili D, Eisner GM, Felder RA (1997) Transgenic mice to study the role of dopamine receptors in cardiovascular function. Clin Exp Hypertens 19:15–25

    Article  CAS  Google Scholar 

  • Kakko J, Alho H, Baldacchino A, Molina R, Nava FA, Shaya G (2019) Craving in opioid use disorder: from neurobiology to clinical practice. Front Psych 10:592

    Article  Google Scholar 

  • Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515

    Article  CAS  Google Scholar 

  • Kampman K (2021) Cariprazine for comorbid cocaine and opioid use didorder. ClinicalTrials.Gov NCT05063201. https://clinicaltrials.gov/ct2/show/NCT05063201?term=cariprazine+and+cocaine&draw=05063202&rank=05063201

  • Keck TM, John WS, Czoty PW, Nader MA, Newman AH (2015) Identifying medication targets for psychostimulant addiction: unraveling the dopamine D3 receptor hypothesis. J Med Chem 58:5361–5380

    Article  CAS  Google Scholar 

  • Keeler BE, Baran CA, Brewer KL, Clemens S (2012) Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse. Exp Neurol 238:273–283

    Article  CAS  Google Scholar 

  • Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM (2021) Oxycodone in the opioid epidemic: high ‘liking’, ‘wanting’, and abuse liability. Cell Mol Neurobiol 41:899–926

    Article  CAS  Google Scholar 

  • Kienast T, Hariri AR, Schlagenhauf F, Wrase J, Sterzer P, Buchholz HG, Smolka MN, Grunder G, Cumming P, Kumakura Y, Bartenstein P, Dolan RJ, Heinz A (2008) Dopamine in amygdala gates limbic processing of aversive stimuli in humans. Nat Neurosci 11:1381–1382

    Article  CAS  Google Scholar 

  • Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276:37409–37414

    Article  CAS  Google Scholar 

  • Kiss B, Horvath A, Nemethy Z, Schmidt E, Laszlovszky I, Bugovics G, Fazekas K, Hornok K, Orosz S, Gyertyan I, Agai-Csongor E, Domany G, Tihanyi K, Adham N, Szombathelyi Z (2010) Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther 333:328–340

    Article  CAS  Google Scholar 

  • Kiss B, Horti F, Bobok A (2011) In vitro and in vivo comparison of [(3)H](+)-PHNO and [(3)H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: a method to distinguish dopamine D(3) from D(2) receptor sites. Synapse 65:467–478

    Article  CAS  Google Scholar 

  • Kleykamp BA, Weiss RD, Strain EC (2019) Time to reconsider the role of craving in opioid use disorder. JAMA Psychiat 76:1113–1114

    Article  Google Scholar 

  • Komorowski A, Weidenauer A, Murgas M, Sauerzopf U, Wadsak W, Mitterhauser M, Bauer M, Hacker M, Praschak-Rieder N, Kasper S, Lanzenberger R, Willeit M (2020) Association of dopamine D2/3 receptor binding potential measured using PET and [(11)C]-(+)-PHNO with post-mortem DRD2/3 gene expression in the human brain. NeuroImage 223:117270

    Article  CAS  Google Scholar 

  • Koob GF (2013) Addiction is a reward deficit and stress surfeit disorder. Front Psych 4:72

    Google Scholar 

  • Koob GF (2021) Drug addiction: hyperkatifeia/negative reinforcement as a framework for medications development. Pharmacol Rev 73:163–201

    Article  CAS  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  CAS  Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818

    Article  CAS  Google Scholar 

  • Kula NS, Baldessarini RJ, Kebabian JW, Neumeyer JL (1994) S-(+)-aporphines are not selective for human D3 dopamine receptors. Cell Mol Neurobiol 14:185–191

    Article  CAS  Google Scholar 

  • Kumar V, Bonifazi A, Ellenberger MP, Keck TM, Pommier E, Rais R, Slusher BS, Gardner E, You ZB, Xi ZX, Newman AH (2016) Highly selective dopamine D3 receptor (D3R) antagonists and partial agonists based on eticlopride and the D3R crystal structure: new leads for opioid dependence treatment. J Med Chem 59:7634–7650

    Article  CAS  Google Scholar 

  • Kuo SC, Yeh YW, Chen CY, Huang CC, Chang HA, Yen CH, Ho PS, Liang CS, Chou HW, Lu RB, Huang SY (2014) DRD3 variation associates with early-onset heroin dependence, but not specific personality traits. Prog Neuro-Psychopharmacol Biol Psychiatry 51:1–8

    Article  CAS  Google Scholar 

  • Lacroix LP, Hows ME, Shah AJ, Hagan JJ, Heidbreder CA (2003) Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology 28:839–849

    Article  CAS  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359

    Article  Google Scholar 

  • Lammers CH, Diaz J, Schwartz JC, Sokoloff P (2000) Dopamine D3 receptor gene expression in the shell of nucleus accumbens is increased by chronic antidepressant treatment. Mol Psychiatry 5:229

    Article  CAS  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993a) Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 5:145–153

    Article  CAS  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993b) Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res Mol Brain Res 18:187–192

    Article  CAS  Google Scholar 

  • Larson ER, Ariano MA (1995) D3 and D2 dopamine receptors: visualization of cellular expression patterns in motor and limbic structures. Synapse 20:325–337

    Article  CAS  Google Scholar 

  • Le Foll B, Payer D, Di Ciano P, Guranda M, Nakajima S, Tong J, Mansouri E, Wilson AA, Houle S, Meyer JH, Graff-Guerrero A, Boileau I (2016) Occupancy of dopamine D3 and D2 receptors by buspirone: a [11C]-(+)-PHNO PET study in humans. Neuropsychopharmacology 41:529–537

    Article  Google Scholar 

  • Le Moine C, Bloch B (1996) Expression of the D3 dopamine receptor in peptidergic neurons of the nucleus accumbens: comparison with the D1 and D2 dopamine receptors. Neuroscience 73:131–143

    Article  Google Scholar 

  • Leggio GM, Bucolo C, Platania CB, Salomone S, Drago F (2016) Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 165:164–177

    Article  CAS  Google Scholar 

  • Lesscher HM, McMahon T, Lasek AW, Chou WH, Connolly J, Kharazia V, Messing RO (2008) Amygdala protein kinase C epsilon regulates corticotropin-releasing factor and anxiety-like behavior. Genes Brain Behav 7:323–333

    Article  CAS  Google Scholar 

  • Levant B (1997) The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev 49:231–252

    CAS  Google Scholar 

  • Levant B (1998) Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res 800:269–274

    Article  CAS  Google Scholar 

  • Levant B, McCarson KE (2001) D(3) dopamine receptors in rat spinal cord: implications for sensory and motor function. Neurosci Lett 303:9–12

    Article  CAS  Google Scholar 

  • Leventhal AM, Mooney ME, DeLaune KA, Schmitz JM (2006) Using addiction severity profiles to differentiate cocaine-dependent patients with and without comorbid major depression. Am J Addict 15:362–369

    Article  Google Scholar 

  • Levesque D, Martres MP, Diaz J, Griffon N, Lammers CH, Sokoloff P, Schwartz JC (1995) A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci U S A 92:1719–1723

    Article  CAS  Google Scholar 

  • Leyton M, Vezina P (2014) Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci 35:268–276

    Article  CAS  Google Scholar 

  • Li YQ, Li FQ, Wang XY, Wu P, Zhao M, Xu CM, Shaham Y, Lu L (2008) Central amygdala extracellular signal-regulated kinase signaling pathway is critical to incubation of opiate craving. J Neurosci 28:13248–13257

    Article  CAS  Google Scholar 

  • Ling W, Hillhouse MP, Saxon AJ, Mooney LJ, Thomas CM, Ang A, Matthews AG, Hasson A, Annon J, Sparenborg S, Liu DS, McCormack J, Church S, Swafford W, Drexler K, Schuman C, Ross S, Wiest K, Korthuis PT, Lawson W, Brigham GS, Knox PC, Dawes M, Rotrosen J (2016) Buprenorphine + naloxone plus naltrexone for the treatment of cocaine dependence: the cocaine use reduction with buprenorphine (CURB) study. Addiction 111:1416–1427

    Article  Google Scholar 

  • Liu S, Vivolo-Kantor A (2020) A latent class analysis of drug and substance use patterns among patients treated in emergency departments for suspected drug overdose. Addict Behav 101:106142

    Article  Google Scholar 

  • Liu XY, Mao LM, Zhang GC, Papasian CJ, Fibuch EE, Lan HX, Zhou HF, Xu M, Wang JQ (2009) Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 61:425–438

    Article  CAS  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    Article  CAS  Google Scholar 

  • Luscher C, Pascoli V (2021) ‘Ups, downs, and sideways’ of dopamine in drug addiction. Trends Neurosci 44:593–594

    Article  CAS  Google Scholar 

  • Lv Y, Hu RR, Jing M, Zhao TY, Wu N, Song R, Li J, Hu G (2019) Selective dopamine D3 receptor antagonist YQA14 inhibits morphine-induced behavioral sensitization in wild type, but not in dopamine D3 receptor knockout mice. Acta Pharmacol Sin 40:583–588

    Article  CAS  Google Scholar 

  • Lyden J, Binswanger IA (2019) The United States opioid epidemic. Semin Perinatol 43:123–131

    Article  Google Scholar 

  • Malec E, Malec T, Gagne MA, Dongier M (1996) Buspirone in the treatment of alcohol dependence: a placebo-controlled trial. Alcohol Clin Exp Res 20:307–312

    Article  CAS  Google Scholar 

  • Manchikanti L, Vanaparthy R, Atluri S, Sachdeva H, Kaye AD, Hirsch JA (2021) COVID-19 and the opioid epidemic: two public health emergencies that intersect with chronic pain. Pain Ther 10:269–286

    Article  Google Scholar 

  • Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V (2016) Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology 41:2215–2223

    Article  CAS  Google Scholar 

  • Marino RA, Levy R (2019) Differential effects of D1 and D2 dopamine agonists on memory, motivation, learning and response time in non-human primates. Eur J Neurosci 49:199–214

    Article  Google Scholar 

  • Martel JC, Gatti McArthur S (2020) Dopamine receptor subtypes, physiology and pharmacology: new ligands and concepts in schizophrenia. Front Pharmacol 11:1003

    Article  CAS  Google Scholar 

  • Matsui A, Williams JT (2011) Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. J Neurosci 31:17729–17735

    Article  CAS  Google Scholar 

  • Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT (2014) Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 82:1346–1356

    Article  CAS  Google Scholar 

  • Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J, Gaiser E, Lee DE, Hannestad J, Lim K, Zheng MQ, Lin SF, Labaree D, Potenza MN, Carson RE, Malison RT, Ding YS (2014) Dopamine D(3) receptor alterations in cocaine-dependent humans imaged with [(1)(1)C](+)PHNO. Drug Alcohol Depend 139:100–105

    Article  CAS  Google Scholar 

  • McGregor A, Roberts DC (1993) Dopaminergic antagonism within the nucleus accumbens or the amygdala produces differential effects on intravenous cocaine self-administration under fixed and progressive ratio schedules of reinforcement. Brain Res 624:245–252

    Article  CAS  Google Scholar 

  • McRae AL, Sonne SC, Brady KT, Durkalski V, Palesch Y (2004) A randomized, placebo-controlled trial of buspirone for the treatment of anxiety in opioid-dependent individuals. Am J Addict 13:53–63

    Article  Google Scholar 

  • McRae-Clark AL, Baker NL, Gray KM, Killeen TK, Wagner AM, Brady KT, DeVane CL, Norton J (2015) Buspirone treatment of cannabis dependence: a randomized, placebo-controlled trial. Drug Alcohol Depend 156:29–37

    Article  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJ Jr (1992) Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci Lett 145:209–212

    Article  CAS  Google Scholar 

  • Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148

    Article  CAS  Google Scholar 

  • Micheli F, Arista L, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Damiani F, Di-Fabio R, Fontana S, Gentile G, Griffante C, Hamprecht D, Marchioro C, Mugnaini M, Piner J, Ratti E, Tedesco G, Tarsi L, Terreni S, Worby A, Ashby CR Jr, Heidbreder C (2010) 1,2,4-Triazolyl azabicyclo[3.1.0]hexanes: a new series of potent and selective dopamine D(3) receptor antagonists. J Med Chem 53:374–391

    Article  CAS  Google Scholar 

  • Millan MJ, Gobert A, Newman-Tancredi A, Lejeune F, Cussac D, Rivet JM, Audinot V, Dubuffet T, Lavielle G (2000) S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. J Pharmacol Exp Ther 293:1048–1062

    CAS  Google Scholar 

  • Millan MJ, Buccafusco JJ, Loiseau F, Watson DJ, Decamp E, Fone KC, Thomasson-Perret N, Hill M, Mocaer E, Schneider JS (2010) The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 13:1035–1051

    Article  CAS  Google Scholar 

  • Min C, Zheng M, Zhang X, Caron MG, Kim KM (2013) Novel roles for beta-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br J Pharmacol 170:1112–1129

    Article  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    Article  CAS  Google Scholar 

  • Mogg K, Bradley BP, O'Neill B, Bani M, Merlo-Pich E, Koch A, Bullmore ET, Nathan PJ (2012) Effect of dopamine D(3) receptor antagonism on approach responses to food cues in overweight and obese individuals. Behav Pharmacol 23:603–608

    Article  CAS  Google Scholar 

  • Monsma FJ Jr, Mahan LC, McVittie LD, Gerfen CR, Sibley DR (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci U S A 87:6723–6727

    Article  CAS  Google Scholar 

  • Mugnaini M, Iavarone L, Cavallini P, Griffante C, Oliosi B, Savoia C, Beaver J, Rabiner EA, Micheli F, Heidbreder C, Andorn A, Merlo Pich E, Bani M (2013) Occupancy of brain dopamine D3 receptors and drug craving: a translational approach. Neuropsychopharmacology 38:302–312

    Article  CAS  Google Scholar 

  • Murray AM, Ryoo HL, Gurevich E, Joyce JN (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci U S A 91:11271–11275

    Article  CAS  Google Scholar 

  • Murthy P, Mahadevan J, Chand PK (2019) Treatment of substance use disorders with co-occurring severe mental health disorders. Curr Opin Psychiatry 32:293–299

    Article  Google Scholar 

  • Myrick H, Anton RF, Li X, Henderson S, Randall PK, Voronin K (2008) Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry 65:466–475

    Article  CAS  Google Scholar 

  • Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, Mulsant B, Pollock B, Graff-Guerrero A (2013) The potential role of dopamine D(3) receptor neurotransmission in cognition. Eur Neuropsychopharmacol 23:799–813

    Article  CAS  Google Scholar 

  • Nakako T, Murai T, Ikejiri M, Ishiyama T, Taiji M, Ikeda K (2013) Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav Brain Res 249:109–115

    Article  CAS  Google Scholar 

  • Naqvi NH, Bechara A (2009) The hidden island of addiction: the insula. Trends Neurosci 32:56–67

    Article  CAS  Google Scholar 

  • Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–534

    Article  CAS  Google Scholar 

  • Narayan A, Balkrishnan R (2021) A health crisis within a health crisis: opioid access in the COVID-19 pandemic. Subst Abus 42:148–152

    Article  Google Scholar 

  • Narendran R, Slifstein M, Guillin O, Hwang Y, Hwang DR, Scher E, Reeder S, Rabiner E, Laruelle M (2006) Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 60:485–495

    Article  CAS  Google Scholar 

  • Narendran R, Frankle WG, Mason NS, Laymon CM, Lopresti BJ, Price JC, Kendro S, Vora S, Litschge M, Mountz JM, Mathis CA (2009) Positron emission tomography imaging of D(2/3) agonist binding in healthy human subjects with the radiotracer [(11)C]-N-propyl-norapomorphine: preliminary evaluation and reproducibility studies. Synapse 63:574–584

    Article  CAS  Google Scholar 

  • Nathan PJ, O'Neill BV, Mogg K, Bradley BP, Beaver J, Bani M, Merlo-Pich E, Fletcher PC, Swirski B, Koch A, Dodds CM, Bullmore ET (2012) The effects of the dopamine D(3) receptor antagonist GSK598809 on attentional bias to palatable food cues in overweight and obese subjects. Int J Neuropsychopharmacol 15:149–161

    Article  CAS  Google Scholar 

  • Neisewander JL, Baker DA, Fuchs RA, Tran-Nguyen LT, Palmer A, Marshall JF (2000) Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J Neurosci 20:798–805

    Article  CAS  Google Scholar 

  • Newman AH, Blaylock BL, Nader MA, Bergman J, Sibley DR, Skolnick P (2012) Medication discovery for addiction: translating the dopamine D3 receptor hypothesis. Biochem Pharmacol 84:882–890

    Article  CAS  Google Scholar 

  • Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi ZX (2021) New drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu Rev Pharmacol Toxicol 61:609–628

    Article  CAS  Google Scholar 

  • O'Dell LE, Sussman AN, Meyer KL, Neisewander JL (1999) Behavioral effects of psychomotor stimulant infusions into amygdaloid nuclei. Neuropsychopharmacology 20:591–602

    Article  CAS  Google Scholar 

  • O'Malley KL, Harmon S, Tang L, Todd RD (1992) The rat dopamine D4 receptor: sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol 4:137–146

    CAS  Google Scholar 

  • Opioid-Use-Disorder (2020) Opioid use disorder: endpoints for demonstrating effectiveness of drugs for treatment guidance for industry. https://www.fda.gov/media/114948/download.accessed

  • Ozdemir E, Bagcivan I, Gursoy S (2013) Role of D(1)/D(2) dopamin receptors antagonist perphenazine in morphine analgesia and tolerance in rats. Bosn J Basic Med Sci 13:119–125

    Article  CAS  Google Scholar 

  • Panagis G, Spyraki C (1996) Neuropharmacological evidence for the role of dopamine in ventral pallidum self-stimulation. Psychopharmacology 123:280–288

    Article  CAS  Google Scholar 

  • Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, Frey JM, Siegel S, Lerman C (2009) Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 65:144–149

    Article  CAS  Google Scholar 

  • Pich EM, Collo G (2015) Pharmacological targeting of dopamine D3 receptors: possible clinical applications of selective drugs. Eur Neuropsychopharmacol 25:1437–1447

    Article  CAS  Google Scholar 

  • Post RM, Kalivas P (2013) Bipolar disorder and substance misuse: pathological and therapeutic implications of their comorbidity and cross-sensitisation. Br J Psychiatry 202:172–176

    Article  Google Scholar 

  • Pribiag H, Shin S, Wang EH, Sun F, Datta P, Okamoto A, Guss H, Jain A, Wang XY, De Freitas B, Honma P, Pate S, Lilascharoen V, Li Y, Lim BK (2021) Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron 109:2165–2182.e2110

    Article  CAS  Google Scholar 

  • Prieto GA, Perez-Burgos A, Palomero-Rivero M, Galarraga E, Drucker-Colin R, Bargas J (2011) Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on ca V 2.1 channels via PIP2 depletion. J Neurophysiol 105:2260–2274

    Article  CAS  Google Scholar 

  • Qaseem A, Snow V, Denberg TD, Forciea MA, Owens DK, Clinical Efficacy Assessment Subcommittee of American College of Physicians (2008) Using second-generation antidepressants to treat depressive disorders: a clinical practice guideline from the American College of Physicians. Ann Intern Med 149:725–733

    Article  Google Scholar 

  • Rabiner EA, Laruelle M (2010) Imaging the D3 receptor in humans in vivo using [11C](+)-PHNO positron emission tomography (PET). Int J Neuropsychopharmacol 13:289–290

    Article  CAS  Google Scholar 

  • Rabiner EA, Slifstein M, Nobrega J, Plisson C, Huiban M, Raymond R, Diwan M, Wilson AA, McCormick P, Gentile G, Gunn RN, Laruelle MA (2009) In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: studies in non-human primates and transgenic mice. Synapse 63:782–793

    Article  CAS  Google Scholar 

  • Raby WN, Rubin EA, Garawi F, Cheng W, Mason E, Sanfilippo L, Lord S, Bisaga A, Aharonovich E, Levin F, McDowell D, Nunes EV (2014) A randomized, double-blind, placebo-controlled trial of venlafaxine for the treatment of depressed cocaine-dependent patients. Am J Addict 23:68–75

    Article  Google Scholar 

  • Regier PS, Jagannathan K, Franklin TR, Wetherill RR, Langleben DD, Gawyrsiak M, Kampman KM, Childress AR (2021) Sustained brain response to repeated drug cues is associated with poor drug-use outcomes. Addict Biol 26:e13028

    Article  CAS  Google Scholar 

  • Ricci V, Di Salvo G, Maina G (2022) Remission of persistent methamphetamine-induced psychosis after cariprazine therapy: presentation of a case report. J Addict Dis 40(1):145–148

    Article  Google Scholar 

  • Rice OV, Gardner EL, Heidbreder CA, Ashby CR Jr (2012) The acute administration of the selective dopamine D(3) receptor antagonist SB-277011A reverses conditioned place aversion produced by naloxone precipitated withdrawal from acute morphine administration in rats. Synapse 66:85–87

    Article  CAS  Google Scholar 

  • Richtand NM (2006) Behavioral sensitization, alternative splicing, and d3 dopamine receptor-mediated inhibitory function. Neuropsychopharmacology 31:2368–2375

    Article  CAS  Google Scholar 

  • Rodgers HM, Yow J, Evans E, Clemens S, Brewer KL (2019) Dopamine D1 and D3 receptor modulators restore morphine analgesia and prevent opioid preference in a model of neuropathic pain. Neuroscience 406:376–388

    Article  CAS  Google Scholar 

  • Rodgers HM, Lim SA, Yow J, Dinkins ML, Patton R, Clemens S, Brewer KL (2020) Dopamine D1 or D3 receptor modulators prevent morphine tolerance and reduce opioid withdrawal symptoms. Pharmacol Biochem Behav 194:172935

    Article  CAS  Google Scholar 

  • Rogers AH, Zvolensky MJ, Ditre JW, Buckner JD, Asmundson GJG (2021) Association of opioid misuse with anxiety and depression: a systematic review of the literature. Clin Psychol Rev 84:101978

    Article  Google Scholar 

  • Roman V, Gyertyan I, Saghy K, Kiss B, Szombathelyi Z (2013) Cariprazine (RGH-188), a D(3)-preferring dopamine D(3)/D(2) receptor partial agonist antipsychotic candidate demonstrates anti-abuse potential in rats. Psychopharmacology 226:285–293

    Article  CAS  Google Scholar 

  • Ron D, Jurd R (2005) The “ups and downs” of signaling cascades in addiction. Sci STKE 2005:re14

    Article  Google Scholar 

  • Rose JS, Branchey M, Wallach L, Buydens-Branchey L (2003) Effects of buspirone in withdrawal from opiates. Am J Addict 12:253–259

    Article  Google Scholar 

  • Ross SB (1991) Synaptic concentration of dopamine in the mouse striatum in relationship to the kinetic properties of the dopamine receptors and uptake mechanism. J Neurochem 56:22–29

    Article  CAS  Google Scholar 

  • Salin A, Lardeux V, Solinas M, Belujon P (2021) Protracted abstinence from extended cocaine self-administration is associated with hypodopaminergic activity in the VTA but not in the SNc. Int J Neuropsychopharmacol 24:499–504

    Article  CAS  Google Scholar 

  • Salloum IM, Brown ES (2017) Management of comorbid bipolar disorder and substance use disorders. Am J Drug Alcohol Abuse 43:366–376

    Article  Google Scholar 

  • Samaha AN, Khoo SY, Ferrario CR, Robinson TE (2021) Dopamine ‘ups and downs’ in addiction revisited. Trends Neurosci 44:516–526

    Article  CAS  Google Scholar 

  • Sanna A, Fattore L, Badas P, Corona G, Diana M (2021) The hypodopaminergic state ten years after: transcranial magnetic stimulation as a tool to test the dopamine hypothesis of drug addiction. Curr Opin Pharmacol 56:61–67

    Article  CAS  Google Scholar 

  • Schmidt BL, Tambeli CH, Barletta J, Luo L, Green P, Levine JD, Gear RW (2002) Altered nucleus accumbens circuitry mediates pain-induced antinociception in morphine-tolerant rats. J Neurosci 22:6773–6780

    Article  CAS  Google Scholar 

  • Schneider NG, Olmstead RE, Steinberg C, Sloan K, Daims RM, Brown HV (1996) Efficacy of buspirone in smoking cessation: a placebo-controlled trial. Clin Pharmacol Ther 60:568–575

    Article  CAS  Google Scholar 

  • Scuppa G, Tambalo S, Pfarr S, Sommer WH, Bifone A (2020) Aberrant insular cortex connectivity in abstinent alcohol-dependent rats is reversed by dopamine D3 receptor blockade. Addict Biol 25:e12744

    Article  Google Scholar 

  • Searle G, Beaver JD, Comley RA, Bani M, Tziortzi A, Slifstein M, Mugnaini M, Griffante C, Wilson AA, Merlo-Pich E, Houle S, Gunn R, Rabiner EA, Laruelle M (2010) Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist. Biol Psychiatry 68:392–399

    Article  CAS  Google Scholar 

  • Seeman P, Ko F, Willeit M, McCormick P, Ginovart N (2005) Antiparkinson concentrations of pramipexole and PHNO occupy dopamine D2(high) and D3(high) receptors. Synapse 58:122–128

    Article  CAS  Google Scholar 

  • Segal DM, Moraes CT, Mash DC (1997) Up-regulation of D3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities. Brain Res Mol Brain Res 45:335–339

    Article  CAS  Google Scholar 

  • Seif T, Chang SJ, Simms JA, Gibb SL, Dadgar J, Chen BT, Harvey BK, Ron D, Messing RO, Bonci A, Hopf FW (2013) Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci 16:1094–1100

    Article  CAS  Google Scholar 

  • Self DW, Nestler EJ (1995) Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 18:463–495

    Article  CAS  Google Scholar 

  • Senatorov VV, Damadzic R, Mann CL, Schwandt ML, George DT, Hommer DW, Heilig M, Momenan R (2015) Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons. Brain 138:69–79

    Article  Google Scholar 

  • Shafer RA, Levant B (1998) The D3 dopamine receptor in cellular and organismal function. Psychopharmacology 135:1–16

    Article  CAS  Google Scholar 

  • Shaik AB, Kumar V, Bonifazi A, Guerrero AM, Cemaj SL, Gadiano A, Lam J, Xi ZX, Rais R, Slusher BS, Newman AH (2019) Investigation of novel primary and secondary pharmacophores and 3-substitution in the linking chain of a series of highly selective and bitopic dopamine D3 receptor antagonists and partial agonists. J Med Chem 62:9061–9077

    Article  CAS  Google Scholar 

  • Shen H, Chen K, Marino RAM, McDevitt RA, Xi ZX (2021) Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacol Biochem Behav 202:173104

    Article  CAS  Google Scholar 

  • Smith RJ, Lobo MK, Spencer S, Kalivas PW (2013) Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 23:546–552

    Article  CAS  Google Scholar 

  • Smith LN, Bachus SE, McDonald CG, Smith RF (2015) Role of the D3 dopamine receptor in nicotine sensitization. Behav Brain Res 289:92–104

    Article  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  Google Scholar 

  • Stanwood GD, McElligot S, Lu L, McGonigle P (1997) Ontogeny of dopamine D3 receptors in the nucleus accumbens of the rat. Neurosci Lett 223:13–16

    Article  CAS  Google Scholar 

  • Stanwood GD, Artymyshyn RP, Kung MP, Kung HF, Lucki I, McGonigle P (2000) Quantitative autoradiographic mapping of rat brain dopamine D3 binding with [(125)I]7-OH-PIPAT: evidence for the presence of D3 receptors on dopaminergic and nondopaminergic cell bodies and terminals. J Pharmacol Exp Ther 295:1223–1231

    CAS  Google Scholar 

  • Statement-from-FDA-Commissioner (2018) Statement from FDA Commissioner Scott Gottlieb, M.D., on new steps to encourage more widespread innovation and development of new treatments for opioid use disorder. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-new-steps-encourage-more-widespread-innovation-and.accessed

  • Strain EC, Kampman KM, Weiss RD (2021) Moving beyond medications that act at the mu receptor in the treatment of opioid use disorder. JAMA Psychiat 78:701–702

    Article  Google Scholar 

  • Sullivan EV, Muller-Oehring E, Pitel AL, Chanraud S, Shankaranarayanan A, Alsop DC, Rohlfing T, Pfefferbaum A (2013) A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men. Biol Psychiatry 74:547–555

    Article  Google Scholar 

  • Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, Sedvall G (1998) D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res 779:58–74

    Article  CAS  Google Scholar 

  • Swain SN, Beuk J, Heidbreder CA, Beninger RJ (2008) Role of dopamine D3 receptors in the expression of conditioned fear in rats. Eur J Pharmacol 579:167–176

    Article  CAS  Google Scholar 

  • Tanda G, Hersey M, Hempel B, Xi ZX, Newman AH (2021) Modafinil and its structural analogs as atypical dopamine uptake inhibitors and potential medications for psychostimulant use disorder. Curr Opin Pharmacol 56:13–21

    Article  CAS  Google Scholar 

  • Taquet M, Holmes EA, Harrison PJ (2021a) Depression and anxiety disorders during the COVID-19 pandemic: knowns and unknowns. Lancet 398(10312):1665–1666

    Article  CAS  Google Scholar 

  • Taquet M, Luciano S, Geddes JR, Harrison PJ (2021b) Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8:130–140

    Article  Google Scholar 

  • Taylor DP, Riblet LA, Stanton HC, Eison AS, Eison MS, Temple DL Jr (1982) Dopamine and antianxiety activity. Pharmacol Biochem Behav 17(Suppl 1):25–35

    Article  CAS  Google Scholar 

  • Thomsen M, Barrett AC, Butler P, Negus SS, Caine SB (2017) Effects of acute and chronic treatments with dopamine D2 and D3 receptor ligands on cocaine versus food choice in rats. J Pharmacol Exp Ther 362:161–176

    Article  CAS  Google Scholar 

  • Trivedi MH, Walker R, Ling W, Dela Cruz A, Sharma G, Carmody T, Ghitza UE, Wahle A, Kim M, Shores-Wilson K, Sparenborg S, Coffin P, Schmitz J, Wiest K, Bart G, Sonne SC, Wakhlu S, Rush AJ, Nunes EV, Shoptaw S (2021) Bupropion and naltrexone in methamphetamine use disorder. N Engl J Med 384:140–153

    Article  CAS  Google Scholar 

  • Tsui JI, Mayfield J, Speaker EC, Yakup S, Ries R, Funai H, Leroux BG, Merrill JO (2020) Association between methamphetamine use and retention among patients with opioid use disorders treated with buprenorphine. J Subst Abus Treat 109:80–85

    Article  Google Scholar 

  • Tupala E, Hall H, Bergstrom K, Sarkioja T, Rasanen P, Mantere T, Callaway J, Hiltunen J, Tiihonen J (2001) Dopamine D(2)/D(3)-receptor and transporter densities in nucleus accumbens and amygdala of type 1 and 2 alcoholics. Mol Psychiatry 6:261–267

    Article  CAS  Google Scholar 

  • Volkow ND (2004) The reality of comorbidity: depression and drug abuse. Biol Psychiatry 56:714–717

    Article  Google Scholar 

  • Volkow ND (2021) Drug overdose deaths in 2020 were horrifying. Radical change is needed to address the drug crisis. Scientific America. https://www.drugabuse.gov/about-nida/noras-blog/2021/2008/drug-overdose-deaths-in-2020-were-horrifying-radical-change-needed-to-address-drug-crisis

  • Walker G (2018) The opioid crisis: a 21st century pain. Drugs Today (Barc) 54:283–286

    Article  CAS  Google Scholar 

  • Westrich L, Gil-Mast S, Kortagere S, Kuzhikandathil EV (2010) Development of tolerance in D3 dopamine receptor signaling is accompanied by distinct changes in receptor conformation. Biochem Pharmacol 79:897–907

    Article  CAS  Google Scholar 

  • Williamson A, Darke S, Ross J, Teesson M (2006) The effect of persistence of cocaine use on 12-month outcomes for the treatment of heroin dependence. Drug Alcohol Depend 81:293–300

    Article  CAS  Google Scholar 

  • Winhusen TM, Kropp F, Lindblad R, Douaihy A, Haynes L, Hodgkins C, Chartier K, Kampman KM, Sharma G, Lewis DF, VanVeldhuisen P, Theobald J, May J, Brigham GS (2014) Multisite, randomized, double-blind, placebo-controlled pilot clinical trial to evaluate the efficacy of buspirone as a relapse-prevention treatment for cocaine dependence. J Clin Psychiatry 75:757–764

    Article  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  CAS  Google Scholar 

  • Wise RA (2005) Forebrain substrates of reward and motivation. J Comp Neurol 493:115–121

    Article  CAS  Google Scholar 

  • Wrase J, Makris N, Braus DF, Mann K, Smolka MN, Kennedy DN, Caviness VS, Hodge SM, Tang L, Albaugh M, Ziegler DA, Davis OC, Kissling C, Schumann G, Breiter HC, Heinz A (2008) Amygdala volume associated with alcohol abuse relapse and craving. Am J Psychiatry 165:1179–1184

    Article  Google Scholar 

  • Xi ZX, Stein EA (2002) GABAergic mechanisms of opiate reinforcement. Alcohol Alcohol 37:485–494

    Article  CAS  Google Scholar 

  • Xi ZX, Li X, Li J, Peng XQ, Song R, Gaal J, Gardner EL (2013) Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addict Biol 18:665–677

    Article  CAS  Google Scholar 

  • Xu W, Reith MEA, Liu-Chen LY, Kortagere S (2019) Biased signaling agonist of dopamine D3 receptor induces receptor internalization independent of beta-arrestin recruitment. Pharmacol Res 143:48–57

    Article  CAS  Google Scholar 

  • Yang J, Villar VAM, Jose PA, Zeng C (2021) Renal dopamine receptors and oxidative stress: role in hypertension. Antioxid Redox Signal 34:716–735

    Article  CAS  Google Scholar 

  • Yawata S, Yamaguchi T, Danjo T, Hikida T, Nakanishi S (2012) Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc Natl Acad Sci U S A 109:12764–12769

    Article  CAS  Google Scholar 

  • You ZB, Gao JT, Bi GH, He Y, Boateng C, Cao J, Gardner EL, Newman AH, Xi ZX (2017) The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology 126:190–199

    Article  CAS  Google Scholar 

  • You ZB, Bi GH, Galaj E, Kumar V, Cao J, Gadiano A, Rais R, Slusher BS, Gardner EL, Xi ZX, Newman AH (2019) Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 44:1415–1424

    Article  CAS  Google Scholar 

  • Yun IA, Fields HL (2003) Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task. Neuroscience 121:747–757

    Article  CAS  Google Scholar 

  • Zale EL, Dorfman ML, Hooten WM, Warner DO, Zvolensky MJ, Ditre JW (2015) Tobacco smoking, nicotine dependence, and patterns of prescription opioid misuse: results from a nationally representative sample. Nicotine Tob Res 17:1096–1103

    Article  Google Scholar 

  • Zarrindast MR, Dinkoub Z, Homayoun H, Bakhtiarian A, Khavandgar S (2002) Dopamine receptor mechanism(s) and morphine tolerance in mice. J Psychopharmacol 16:261–266

    Article  CAS  Google Scholar 

  • Zeng C, Sanada H, Watanabe H, Eisner GM, Felder RA, Jose PA (2004) Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 19:233–246

    Article  CAS  Google Scholar 

  • Zeng C, Asico LD, Yu C, Villar VA, Shi W, Luo Y, Wang Z, He D, Liu Y, Huang L, Yang C, Wang X, Hopfer U, Eisner GM, Jose PA (2008) Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney Int 74:750–759

    Article  CAS  Google Scholar 

  • Zhang D, Zhang H, Jin GZ, Zhang K, Zhen X (2008) Single dose of morphine produced a prolonged effect on dopamine neuron activities. Mol Pain 4:57

    Article  Google Scholar 

  • Zhang Y, Zhang F, Yang C, Jin H, Yang Y, Xu M (2012) Dopamine affects the change of pain-related electrical activity induced by morphine dependence. Neurochem Res 37:977–982

    Article  CAS  Google Scholar 

  • Zhang X, Le HT, Zhang X, Zheng M, Choi BG, Kim KM (2016a) Palmitoylation on the carboxyl terminus tail is required for the selective regulation of dopamine D2 versus D3 receptors. Biochim Biophys Acta 1858:2152–2162

    Article  CAS  Google Scholar 

  • Zhang X, Sun N, Zheng M, Kim KM (2016b) Clathrin-mediated endocytosis is responsible for the lysosomal degradation of dopamine D3 receptor. Biochem Biophys Res Commun 476:245–251

    Article  CAS  Google Scholar 

  • Zhou X, Qin B, Del Giovane C, Pan J, Gentile S, Liu Y, Lan X, Yu J, Xie P (2015) Efficacy and tolerability of antidepressants in the treatment of adolescents and young adults with depression and substance use disorders: a systematic review and meta-analysis. Addiction 110:38–48

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all our colleagues and collaborators who have worked with us over the years to investigate the D3R and its role in SUD. A.H.N. and Z.-X.X. acknowledge support from the National Institute on Drug Abuse-Intramural Research Program (ZIADA000424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Hauck Newman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newman, A.H., Xi, ZX., Heidbreder, C. (2022). Current Perspectives on Selective Dopamine D3 Receptor Antagonists/Partial Agonists as Pharmacotherapeutics for Opioid and Psychostimulant Use Disorders. In: Boileau, I., Collo, G. (eds) Therapeutic Applications of Dopamine D3 Receptor Function. Current Topics in Behavioral Neurosciences, vol 60. Springer, Cham. https://doi.org/10.1007/7854_2022_347

Download citation

Publish with us

Policies and ethics