Skip to main content
Log in

Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Phosphodiesterases (PDEs) belonging to the PDE4 family control intracellular concentrations of cyclic adenosine monophosphate (cAMP) by catalyzing its hydrolysis. Four separate PDE4 genes (PDE4A, PDE4B, PDE4C, and PDE4D) have been identified. PDE4 has been reported to be involved in various central nervous system (CNS) functions including depression, memory, and schizophrenia, although the specific subtype mediating these effects remains unclear.

Objective

To investigate the role of PDE4B in the CNS, PDE4B wild-type and knockout mice (C57BL/6N background) were assessed in a variety of well-characterized behavioral tasks, and their brains were assayed for monoamine content.

Results

Knockout mice showed a significant reduction in prepulse inhibition. Spontaneous locomotor activity was decreased (16%) in knockout mice. Furthermore, when challenged with amphetamine, both groups of mice responded similarly to a low dose of d-amphetamine (1.0 mg/kg), but knockout mice showed an enhanced response to a higher dose (1.78 mg/kg). Decreases in baseline levels of monoamines and their metabolites within the striatum of knockout mice were also observed. PDE4B knockout mice showed a modest decrease in immobility time in the forced swim test that approached significance. In several other tests, including the elevated plus maze, hot plate, passive avoidance, and Morris water maze, wild-type and knockout mice performed similarly.

Conclusion

The present studies demonstrate decreased striatal DA and 5-HT activity in the PDE4B knockout mice associated with decreased prepulse inhibition, decreased baseline motor activity, and an exaggerated locomotor response to amphetamine. These data further support a role for PDE4B in psychiatric diseases and striatal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DA:

dopamine

DOPAC:

dihydroxyphenlyacetic acid

5-HIAA:

5-hydroxyindoleacetic acid

5-HT:

serotonin

HVA:

homovanillic acid

PDEs:

phosphodiesterase

References

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Crippa D, di Dio S, Fichte K, Musmeci G, Porro V, Rapisarda V, Sastre-y-Hernandez M, Schratzer M (1988) Rolipram versus imipramine in inpatients with major, “minor” or atypical depressive disorder: a double-blind double-dummy study aimed at testing a novel therapeutic approach. Int Clin Psychopharmacol 3:245–253

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12(20):2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Bubser M, Koch M (1994) Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl) 113:487–492

    Article  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 1:179–186

    Article  CAS  Google Scholar 

  • Carlsson A (2001) A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel Lect Biosci Reports 21:691–710

    Article  CAS  Google Scholar 

  • Carlsson ML, Carlsson A, Nilsson M (2004) Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 11:267–277

    Article  PubMed  CAS  Google Scholar 

  • Cherry JA, Davis RL (1999) Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 407:287–301

    Article  PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2002) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278:5493–5496

    Article  PubMed  Google Scholar 

  • Davis JA, Gould TJ (2005) Rolipram attenuates MK-801-induced deficits in latent inhibition. Behav Neurosci 119:595–602

    Article  PubMed  CAS  Google Scholar 

  • Dlaboga D, Hajjhussein H, O’Donnell JM (2006) Regulation of phosphodiesterase-4 (PDE4) expression in mouse brain by repeated antidepressant treatment: comparison with rolipram. Brain Res 1096:104–112

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Budde S, Cools AR (1996) Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Lubbers LJ, Cools AR (2002) The role of hippocampal dopamine receptors in prepulse inhibition. Eur J Neurosci 15:1237–1243

    Article  PubMed  Google Scholar 

  • Fleischhacker WW, Hinterhuber H, Bauer H, Pflug B, Berner P, Simhandl C, Wolf R, Gerlach W, Jaklitsch H, Sastre-y-Hernandez M (1992) A multicenter double-blind study of three different doses of the new cAMP-phosphodiesterase inhibitor rolipram in patients with major depressive disorder. Neuropsychobiology 26:59–64

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Ghavami A, Hirst WD, Novak TJ (2006) Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit? Drugs R D 7:63–71

    Article  PubMed  CAS  Google Scholar 

  • Hart S, Zreik M, Carper R, Swerdlow NR (1998) Localizing haloperidol effects on sensorimotor gating in a predictive model of antipsychotic potency. Pharmacol Biochem Behav 61:113–119

    Article  PubMed  CAS  Google Scholar 

  • Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Sastre-y-Hernandez M, Schony W, Schratzer M, Soukop W et al (1989) Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry 22:156–160

    PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Iona S, Cuomo M, Bushnik T, Naro F, Sette C, Hess M, Shelton ER, Conti M (1998) Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol 53:23–32

    PubMed  CAS  Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13:222–257

    Article  PubMed  CAS  Google Scholar 

  • Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Natl Acad Sci USA 99:7628–7633

    Article  CAS  Google Scholar 

  • Jin S-LC, Richard FJ, Kuo WP, D’Ercole AJ, Conti M (1999) Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci USA 96:11998–12003

    Article  PubMed  CAS  Google Scholar 

  • Jin SL, Latour AM, Conti M (2005) Generation of PDE4 knockout mice by gene targeting. Methods Mol Biol 307:191–210

    PubMed  CAS  Google Scholar 

  • Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  PubMed  CAS  Google Scholar 

  • Kehne JH, Padich RA, McCloskey TC, Taylor VL, Schmidt CJ (1996) 5-HT modulation of auditory and visual sensorimotor gating: I. Effects of 5-HT releasers on sound and light prepulse inhibition in Wistar rats. Psychopharmacology (Berl) 124:95–106

    Article  CAS  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Kusljic S, van den Buuse M (2004) Functional dissociation between serotonergic pathways in dorsal and ventral hippocampus in psychotomimetic drug-induced locomotor hyperactivity and prepulse inhibition in rats. Eur J Neurosci 20:3424–3432

    Article  PubMed  Google Scholar 

  • Kusljic S, Brosda J, Norman TR, van den Buuse M (2005) Brain serotonin depletion by lesions of the median raphe nucleus enhances the psychotomimetic action of phencyclidine, but not dizocilpine (MK-801), in rats. Brain Res 1049:217–226

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, DeSouza CD, Endos I (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Lobban M, Shakur Y, Beattie J, Houslay MD (1994) Identification of two splice variant forms of type-IVB cyclic AMP phosphodiesterase, DPD (rPDE-IVB1) and PDE-4 (rPDE-IVB2) in brain: selective localization in membrane and cytosolic compartments and differential expression in various brain regions. Biochem J 304:399–406

    PubMed  CAS  Google Scholar 

  • MacKenzie SJ, Houslay M (2000) Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J 347:571–578

    Article  PubMed  CAS  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 115:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Mansbach RS, Geyer MA, Braff DL (1988) Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 94:507–514

    Article  PubMed  CAS  Google Scholar 

  • Marubio LM, Paylor R (2004) Impaired passive avoidance learning in mice lacking central neuronal nicotinic acetylcholine receptors. Neuroscience 129:575–582

    Article  PubMed  CAS  Google Scholar 

  • Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107

    Article  PubMed  CAS  Google Scholar 

  • McPhee I, Pooley L, Lobban M, Bolger G, Houslay MD (1995) Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J 310:965–974

    PubMed  CAS  Google Scholar 

  • Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 31:1187–1191

    Article  CAS  Google Scholar 

  • Mizokawa T, Kimura K, Ikoma Y, Hara K, Oshino N, Yamamoto T, Ueki S (1988) The effect of a selective phosphodiesterase inhibitor, rolipram, on muricide in olfactory bulbectomized rats. Jpn J Pharmacol 48:357–364

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Baba J, Ichimaru Y, Suzuki T (2000) Effects of rolipram, a selective inhibitor of phosphodiesterase 4, on hyperlocomotion induced by several abused drugs in mice. Jpn J Pharmacol 83:113–118

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  Google Scholar 

  • Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell JM (1993) Antidepressant-like effects of rolipram and other inhibitors of cyclic adenosine monophosphate phosphodiesterase on behavior maintained by differential reinforcement of low response rate. J Pharmacol Exp Ther 264:1168–1178

    PubMed  CAS  Google Scholar 

  • O’Donnell JM, Zhang HT (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163

    Article  PubMed  CAS  Google Scholar 

  • Overstreet DH, Double K, Schiller GD (1989) Antidepressant effects of rolipram in a genetic animal model of depression: cholinergic supersensitivity and weight gain. Pharmacol Biochem Behav 34:691–696

    Article  PubMed  CAS  Google Scholar 

  • Padich RA, McCloskey TC, Kehne JH (1996) 5-HT modulation of auditory and visual sensorimotor gating: II. Effects of the 5-HT2A antagonist MDL 100,907 on disruption of sound and light prepulse inhibition produced by 5-HT agonists in Wistar rats. Psychopharmacology (Berl) 124:107–116

    Article  CAS  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and[3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20:349–744

    Article  PubMed  CAS  Google Scholar 

  • Pickard BS, Thomson PA, Christoforou A, Evans KL, Morris SW, Porteous DJ, Blackwood DH, Muir WJ (2007) The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatr Genet 17:129–133

    Article  PubMed  Google Scholar 

  • Pietzcker A, Muller-Oerlinghausen B, Kehr W (1979) Antipsychotic activity of rolipram in schizophrenic patients. A pilot study. Naunyn–Schmiedebergs Arch Pharmacol 308:R44

    Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Prinssen EP, Assie MB, Koek W, Kleven MS (2002) Depletion of 5-HT disrupts prepulse inhibition in rats: dependence on the magnitude of depletion, and reversal by a 5-HT precursor. Neuropsychopharmacology 26:340–347

    Article  PubMed  CAS  Google Scholar 

  • Renau TE (2004) The potential of phosphodiesterase 4 inhibitors for the treatment of depression: opportunities and challenges. Curr Opin Investig Drugs 5:34–39

    PubMed  CAS  Google Scholar 

  • Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, Laliberte F, Liu S, Huang Z, Conti M, Chan CC (2002) Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110:1045–1052

    PubMed  CAS  Google Scholar 

  • Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334

    Article  PubMed  CAS  Google Scholar 

  • Schneider HH (1984) Brain cAMP response to phosphodiesterase inhibitors in rats killed by microwave irradiation or decapitation. Biochem Pharmacol 33:1690–1693

    Article  PubMed  CAS  Google Scholar 

  • Scott AI, Perini AF, Shering PA, Whalley LJ (1991) In-patient major depression: is rolipram as effective as amitriptyline? Eur J Clin Pharmacol 40:127–129

    Article  PubMed  CAS  Google Scholar 

  • Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Fujiwara RA (2004) The activity of pramipexole in the mouse forced swim test is mediated by D2 rather than D3 receptors. Psychopharmacology 175:163–169

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM (1994) Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res 633:326–330

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, Stock JL, McNeish JD, Strick CA, Menniti FS, Schmidt CJ (2006) Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 51:374–385

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Chapin DS, McCarthy SA, Martin AN (2007a) Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 192:415–424

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Chapin DS, McCarthy SA, Martin AN, Reed TM, Vorhees CV, Repaske DR (2007b) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53:113–124

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA, Koob GF (2001) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biol Psychiatry 21:23–33

    Article  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Kuczenski R, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie R (2006) Forebrain D1 function and sensorimotor gating in rats: effects of D1 blockade, frontal lesions and dopamine denervation. Neurosci Lett 402:40–45

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terwilliger R, Lane S, Mezes PS, Conti M, Duman RS (1999) Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci 19:610–618

    PubMed  CAS  Google Scholar 

  • Van Dam D, Lenders G, De Deyn PP (2006) Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. Neurobiol Learn Mem 85(2):164–172

    Article  PubMed  Google Scholar 

  • Wachtel H (1983a) Potential antidepressant activity of rolipram and other selective cyclic adenosine 3′,5′-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22:267–272

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H (1983b) differences in behavioural effects of rolipram and other adenosine cyclic 3′H, 5H-monophosphate phosphodiesterase inhibitors. J Neural Transm 56:139–152

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Schneider HH (1986) Rolipram, a novel antidepressant drug, reverses the hypothermia and hypokinesia of monoamine-depleted mice by an action beyond postsynaptic monoamine receptors. Neuropharmacology 25:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O’Donnell JM (1997) Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 69:2397–2404

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M, O’Donnell JM (2002) Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology 27:587–595

    PubMed  CAS  Google Scholar 

  • Zhang KY, Ibrahim PN, Gillette S, Bollag G (2005) Phosphodiesterase-4 as a potential drug target. Expert Opin Ther Targets 9(6):1283–1305

    Article  PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, Masood A, Stolinski LR, Li Y, Zhang L, Dlaboga D, Jin SL, Conti M, O’donnell JM (2007) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology Aug 15 [Epub ahead of print]

Download references

Acknowledgment

The authors would like to thank Dr. Marco Conti for supplying the breeding pairs of PDE4B wild-type and knockout mice used to initiate our colonies, Linda Loverro for her assistance in the breeding, colony expansion, and delivery of the knockout mice, and Dr. John Kehne for helpful discussions during the preparation of this manuscript. Portions of this work were presented at the Society for Neuroscience Meeting, 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Siuciak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siuciak, J.A., McCarthy, S.A., Chapin, D.S. et al. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 197, 115–126 (2008). https://doi.org/10.1007/s00213-007-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1014-6

Keywords

Navigation