Skip to main content
Log in

Demagnification Imaging Improved by Mask in a Hyperlens Photolithography System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hyperlens, composed by curved dielectric-metal layers, are often used in photolithography systems to realize demagnification imaging in subwavelength scale. Most studies are focused on the design of the hyperlens for resolution enhancement. Here, we show the demagnification imaging can also be improved by the mask. It is found that the demagnification ratio can be increased by 14.5 % when a silver rather than a chromium mask is used. An image with a half-pitch resolution of about one tenth of the operating wavelength can be achieved if the mask material and thickness are properly selected. The image contrast can also be promoted by introducing a phase-shifting layer on the top of the mask.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Pendry JB (2000) Negative refraction makes a perfectlens. Phys Rev Lett 85:3966–3969

    Article  CAS  PubMed  Google Scholar 

  3. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  PubMed  Google Scholar 

  4. DO M, RJ B (2006) Experimental comparison of resolution and pattern fidelity in single-and double-layer planar lens lithography. JOSA B 23:461–467

    Google Scholar 

  5. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical-hyperlens: Farfield imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  PubMed  Google Scholar 

  6. Arnold MD, Blaikie RJ (2007) Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs. Opt Express 15:11542–11552

    Article  PubMed  Google Scholar 

  7. Melville D, Blaikie R (2015) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134

    Article  Google Scholar 

  8. Shao DB, Chen SC (2008) Surface plasmon assisted contact scheme nanoscale photolithography. J Vac Sci Technol B 26:227–231

    Article  CAS  Google Scholar 

  9. Liu H, Wang B, Ke L, Deng J, Chum CC, Teo SL, Shen L, Maier SA, Teng JH (2012) High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett 12:1549–1554

    Article  CAS  PubMed  Google Scholar 

  10. Wang CT, Gao P, Zhao ZY, Yao N, Wang YQ, Liu L, Liu KP, Luo XG (2013) Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express 21:20683–20691

    Article  CAS  PubMed  Google Scholar 

  11. Xiong Y, Liu ZW, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl Phys Lett 94:203108

    Article  CAS  Google Scholar 

  12. Dong JJ, Liu J, Kang GG, Xie JH, Wang YT (2014) Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci Rep 4

  13. Zhang W, Yao N, Wang C, Zhao Z, Wang Y, Gao P, Luo XG (2014) Off axis illumination planar hyperlens for non-contacted deep subwavelength demagnifying lithography. Plasmonics 9:1333–1339

    Article  CAS  Google Scholar 

  14. Lu D, Liu ZW (2012) Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun 3

  15. Dong JJ, Liu J, Zhao X (2013) A super lens system for demagnification imaging beyond the diffraction limit. J Plasmonics 8:1543–1550

    Article  CAS  Google Scholar 

  16. Meng Q, Zhang X, Cheng L (2011) Deep subwavelength focusing of light by a trumpet hyperlens. J Opt 13:075102

    Article  Google Scholar 

  17. Ren GW, Wang CT, Yi WG, Tao X, Luo XG (2013) Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics 8:1065–1072

    Article  CAS  Google Scholar 

  18. Yao N, Lai Z, Fang L (2011) Improving resolution of superlens lithography by phase-shifting mask. J Opt Expr 19:15982–15989

    Article  CAS  Google Scholar 

  19. Feng NN, Brongersma ML, Negro LD (2007) Metal–dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. J Quantum Electron 43:479–485

    Article  CAS  Google Scholar 

  20. Feng NN, Negro LD (2007) Plasmon mode transformation in modulated-index metal-dielectric slot waveguides. J Opt Lett 32:3086–3088

    Article  CAS  Google Scholar 

  21. Kurokawa Y, Miyazaki H (2007) Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys Rev B 75:035411

    Article  CAS  Google Scholar 

  22. Dionne J, Sweatlock L, Atwater H, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  CAS  Google Scholar 

  23. Rukhlenko ID, Pannipitiya A, Premaratne M (2011) Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides. J Opt Lett 36:3374–3376

    Article  Google Scholar 

  24. Dionne JA, Sweatlock LA, Atwater HA (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. J Phys Rev B 72:075405

    Article  CAS  Google Scholar 

  25. MJ M (2002) Fundamentals of microfabrication. CRC, Boca Raton

    Google Scholar 

  26. Motaung DE, Malgas GF, Arendse CJ (2012) Determination of the structure, morphology and complex refractive index in ZnO-nanopencils/P3HT hybrid structures. J Mater Chem Phys 135:401–410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program Grant No. 2013CBA01702), the National Natural Science Founding of China (Grant NOs 61405012 and 61420106014), NCET, and Excellent young scholars Research Fund of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Hu, Juan Liu or Yongtian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Hu, B., Yang, Y. et al. Demagnification Imaging Improved by Mask in a Hyperlens Photolithography System. Plasmonics 12, 735–741 (2017). https://doi.org/10.1007/s11468-016-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0320-4

Keywords

Navigation