Skip to main content
Log in

Pushing feature size down to 11 nm by hyperbolic metamaterials-based interference photolithography under illumination of UV light source

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Limited by the cost and complexity, ultra-high resolution lithography is hardly achieved through the traditional interference lithography. Here we developed the plasmonic interference lithography technique by means of using hyperbolic metamaterials (HMMs, SiO2/Al or GaN/Al)/photoresist/metal plasmonic waveguide to push the feature sizes theoretically down to 16 nm and even to 11 nm at the wavelength of 365 nm with TM polarization. The waveguide based on the proposed HMMs can support high-k mode for ultra-high resolution lithography. Furthermore, plasmonic mode supported in the proposed lithography structure can be tailored by dimension of HMMs and permittivity of the materials, which makes it possible to obtain high resolution pattern under illumination of conventional UV light. Our findings will open up avenues for the improvement in nanolithography node toward 10 nm for low-cost and large area fabrication under illumination of conventional UV light source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Bates, M. Rothschild, T.M. Bloomstein, T.H. Fedynyshyn, R.R. Kunz, V. Liberman, M. Switkes, Review of technology for 157-nm lithography. IBM J. Res. Develop. 45, 605–614 (2001)

    Article  Google Scholar 

  2. J.P. Silverman, Challenges and progress in x-ray lithography. J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998)

    Article  Google Scholar 

  3. H. Raether, Surface plasmons on smooth and rough surface and on gratings (Springer, Heidelberg, 1988)

    Book  Google Scholar 

  4. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84(23), 4780–4782 (2004)

    Article  ADS  Google Scholar 

  5. X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)

    Article  ADS  Google Scholar 

  6. Z.W. Liu, Q.H. Wei, X. Zhang, Surface plasmon interference nanolithography. Nano Lett. 5(5), 957–961 (2005)

    Article  ADS  Google Scholar 

  7. D.B. Shao, S.C. Chen, Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)

    Article  ADS  Google Scholar 

  8. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  9. H. Liu, B. Wang, L. Ke, J. Deng, C.C. Choy, M.S. Zhang, L. Shen, S.A. Maier, J.H. Teng, High contrast superlens lithography engineered by loss reduction. Adv. Func. Mater. 22(18), 3777–3783 (2012)

    Article  Google Scholar 

  10. X. Yang, D.H. Zhang, Z. Xu, Y. Wang, J. Wang, Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination. Appl. Phys. B 109, 215–219 (2012)

    Article  ADS  Google Scholar 

  11. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21(18), 20683–20691 (2013)

    Article  ADS  Google Scholar 

  12. T. Xu, Y. Zhao, C. Wang, J. Cui, C. Du, X. Luo, Sub-diffraction-limited interference photolithography with metamaterials. Opt. Express 16(18), 13579–13584 (2008)

    Article  ADS  Google Scholar 

  13. Y. Xiong, Z. Liu, X. Zhang, Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl. Phys. Lett. 93(11), 111116 (2008)

    Article  ADS  Google Scholar 

  14. X. Yang, B. Zeng, C. Wang, X. Luo, Breaking the feature sizes down to sub-22 nm by plasmonic interference lithography using dielectric-metal multilayer. Opt. Express 17(24), 21560–21565 (2009)

    Article  ADS  Google Scholar 

  15. H. Peng Zhu, Shi, and L. Jay Guo, SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography. Opt. Express 20(11), 12521–12529 (2012)

    Article  ADS  Google Scholar 

  16. G. Liang, C. Wang, Z. Zhao, Y. Wang, N. Yao, P. Gao, Y. Luo, G. Gao, Q. Zhao, X. Luo, Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv Opt. Mater. 3, 1248 (2015)

    Article  Google Scholar 

  17. X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, L. Jay Guo, Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial. ACS Nano 11, 9863–9868 (2017)

    Article  Google Scholar 

  18. H. Liu, W. Kong, K. Liu, C. Zhao, W. Du, C. Wang, L. Liu, P. Gao, M. Pu, X. Luo, Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. Opt. Express 25(17), 20511 (2017)

    Article  ADS  Google Scholar 

  19. H. Liu, Y. Luo, W. Kong, K. Liu, W. Du, C. Zhao, P. Gao, Z. Zhao, C. Wang, M. Pu, X. Luo, Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. Opt Mater Express 8(2), 199–209 (2018)

    Article  ADS  Google Scholar 

  20. Y. Qian, B. Li, L. Min, W. Liu, J. Liu, B. Hu, Highly uniform plasmonic interference lithography assisted by hyperbolic multilayer graphene. Plasmonics 15, 623–629 (2020)

    Article  Google Scholar 

  21. J. Dong, J. Liu, G. Kang, J. Xie, Y. Wang, Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep. 4, 5618 (2014)

    Article  ADS  Google Scholar 

  22. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  ADS  Google Scholar 

  23. W. Kong, Y. Luo, C. Zhao, L. Liu, P. Gao, M. Pu, C. Wang, X. Luo, Plasmonic interference lithography for low-cost fabrication of dense lines with sub-50 nm half-pitch. ACS Appl. Nano Mater. 2(1), 489–496 (2019)

    Article  Google Scholar 

  24. M.J. Madou, Fundamentals of Microfabrication (CRC, Boca Raton, 2002)

    Google Scholar 

  25. A.S. Barker Jr., M. Ilegems, Infrared lattice vibrations and free-electron dispersion in GaN. Phys. Rev. B 7, 743 (1973)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (NSFC) (U1604133, 12074102 and 11804082), Foundation of Henan Educational Committee (No. 20A140013). We are so grateful for Prof. Y.Q. Fu’s help of giving a written polishing to our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, S., Wang, B. et al. Pushing feature size down to 11 nm by hyperbolic metamaterials-based interference photolithography under illumination of UV light source. Appl. Phys. A 129, 87 (2023). https://doi.org/10.1007/s00339-023-06385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06385-8

Keywords

Navigation