Skip to main content
Log in

Prediction of flow liquefaction instability of clean and silty sands

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Adding a small amount of non-plastic silt to clean sands may lead to dramatic loss of shear strength and a noteworthy tendency toward contraction when the mechanical behavior of the mixture is compared with that of the clean host sand. Thus, simulation of the behavior of silty sands with varying fines content is still a challenging subject in geomechanics. A unified constitutive model for clean and silty sands is presented in this paper. To eliminate the factitious decrease of void ratio associated with inactive silt particles in various silty sand mixtures, the concept of equivalent void ratio is used in the model formulation instead of the global void ratio. In addition, the instantaneous soil state is expressed in terms of intergranular state parameter taking into account the combined influence of intergranular void ratio, mean principal effective stress and fines content. Then, dilatancy and plastic hardening modulus are directly linked to the intergranular state parameter. To improve the model capacity in simulation of cyclic tests, new features are added to the plastic hardening modulus. It is shown that the proposed model can reasonably reproduce the mechanical behavior as well as the onset of flow liquefaction instability of clean and silty sands using a unique set of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Dilatancy parameter (Eq. 22)

B :

Model parameter (Eq. 31)

b :

Fines participation factor (Eq. 2)

c (=M e/M c):

Model parameter

c h :

Plastic hardening parameter (Eq. 23)

D pp , D pq , D qp , D qq :

See Eqs. (45)–(49)

d :

Dilatancy function (Eq. 22)

e :

Global void ratio

e*:

Equivalent intergranular void ratio (Eq. 2)

e 0 :

Critical state line parameter (Eq. 28)

e cs :

Critical state void ratio

F(e):

Shear modulus void ratio dependency function (Eq. 29)

F(e*):

Shear and bulk moduli intergranular void ratio dependency function (Eq. 35)

f :

Yield function (Eq. 16)

FC:

Fines content

FCth :

Threshold fines content (Eq. 1)

G :

Elastic shear modulus

\( \bar{G} \) :

Gibbs free energy parameter (Eqs. 3335)

G 0 :

Elastic shear modulus parameter (Eqs. 29, 35)

H(L):

Heaviside step function

\( H(\rho ,\bar{\rho }) \) :

See Eq. (24)

h 0 :

Plastic hardening parameter (Eq. 23)

J :

Elastic volumetric–shear coupling modulus

K :

Elastic bulk modulus

\( \bar{K} \) :

Gibbs free energy parameter (Eqs. 3335)

K p :

Plastic hardening modulus

K p-cr :

Critical plastic hardening modulus (Eq. 53)

m :

Yield function opening parameter (Eq. 17)

M :

Critical state stress ratio

M c :

Critical state stress ratio of triaxial compression

M e :

Critical state stress ratio of triaxial extension

n b :

Bounding back-stress ratio parameter (Eq. 26)

n d :

Dilation back-stress ratio parameter (Eq. 26)

L :

Loading index

p :

Mean principal effective stress

p 0 :

Initial value of p at zero elastic strains (Eq. 33)

p ref :

Reference pressure (=100 kPa in this paper)

q :

Shear stress

q 0 :

Initial value of q at zero elastic strains (Eq. 33)

s :

See Eq. (17) for definition

Z (=D 10/d 50):

Size ratio

α :

Back-stress ratio

α in :

Initial value of back-stress ratio in the most recent shear loading (see Eq. 23)

α b :

Bounding back-stress ratio (Eq. 22)

α d :

Dilation back-stress ratio (Eq. 22)

α m :

Memory back-stress ratio (Table 2)

Γ:

Gibbs free energy function

γ :

Shear strain (Fig. 3)

χ :

Shear and bulk moduli pressure dependency exponent (see Fig. 3 and Eqs. 29, 34 and 35)

χ max :

Maximum value of χ

χ min :

Minimum value of χ

ε :

Strain tensor (see Table 1)

ε e :

Elastic strain tensor (see Table 1)

ε er :

Reversible elastic strain tensor (see Table 1)

ε ei :

Irreversible elastic strain tensor (see Table 1)

ε i :

Irreversible strain tensor (see Table 1)

ε p :

Irreversible plastic strain tensor (see Table 1)

λ :

Critical state line parameter (Eq. 28)

ξ :

Critical state line parameter (Eq. 28)

\( \rho ,\,\bar{\rho } \) :

See Eq. (25)

ε q :

Shear strain

ε v :

Volumetric strain

ϖ :

Elastic–plastic coupling variable

η (=q/p):

Stress ratio

η in :

Initial value of η at zero elastic strains (Eq. 36)

η peak :

Peak stress ratio

η PT :

Phase transformation stress ratio

ψ*:

Intergranular state parameter (Eq. 27)

References

  1. Andrade JE (2009) A predictive framework for liquefaction instability. Géotechnique 59(8):673–682

    Article  Google Scholar 

  2. Andrade JE, Ramos AM, Lizcano A (2013) Criterion for flow liquefaction instability. Acta Geotech 8:525–535

    Article  Google Scholar 

  3. Bahadori H, Ghalandarzadeh A, Towhata I (2008) Effect of non plastic silt on the anisotropic behavior of sand. Soils Found 48(4):531–545

    Article  Google Scholar 

  4. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Article  Google Scholar 

  5. Bobei DC, Lo SR, Wanatowski D, Gnanendran CT, Rahman MM (2009) Modified state parameter for characterizing static liquefaction of sand with fines. Can Geotech J 46:281–295

    Article  Google Scholar 

  6. Borja RI (2006) Condition for liquefaction instability in fluid-saturated granular soils. Acta Geotech 1(4):211–224

    Article  Google Scholar 

  7. Borja RI (2006) Conditions for instabilities in collapsible solids including implosion and compaction banding. Acta Geotech 1:107–122

    Article  Google Scholar 

  8. Cai Y, Yu H-S, Wanatowski D, Li X (2013) Noncoaxial behavior of sand under various stress paths. ASCE J Geotech Geoenviron Eng 139(8):1381–1395

    Article  Google Scholar 

  9. Chang CS, Yin Z-Y (2011) Micromechanical modeling for behavior of silty sand with influence of fine content. Int J Solids Struct 48:2655–2667

    Article  Google Scholar 

  10. Cho G-C, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. ASCE J Geotech Geoenviron Eng 132(5):591–602

    Article  Google Scholar 

  11. Chu J, Wanatowski D (2008) Instability conditions of loose sand in plane strain. ASCE J Geotech Geoenviron Eng 134(1):136–142

    Article  Google Scholar 

  12. Chu J, Leroueil S, Leong WK (2003) Unstable behavior of sand and its implication for slope stability. Can Geotech J 40:873–885

    Article  Google Scholar 

  13. Collins IF, Houlsby GT (1997) Application of thermomechanical principles to the modeling of geotechnical materials. Proc R Soc A 453:1975–2001

    Article  MATH  Google Scholar 

  14. Dafalias YF, Manzari MT (2004) Simple plasticity sand model accounting for fabric change effects. ASCE J Eng Mech 130(6):622–634

    Article  Google Scholar 

  15. Dafalias YF, Papadimitriou AG, Li XS (2004) Sand plasticity model accounting for inherent fabric anisotropy. ASCE J Eng Mech 130(11):1319–1333

    Article  Google Scholar 

  16. Einav I, Puzrin AM (2004) Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. ASCE J Geotech Geoenviron Eng 130(1):81–92

    Article  Google Scholar 

  17. Ezaoui A, Di Benedetto H (2009) Experimental measurements of the global anisotropic elastic behavior of dry Hostun sand during triaxial tests, and effect of sample preparation. Géotechnique 59(7):621–635

    Article  Google Scholar 

  18. Farahmand K, Lashkari A, Ghalandarzadeh A (2016) Firoozkuh sand: introduction of a benchmark for geomechanical studies. Iran J Sci Technol Trans C (Civil Eng) 40(C2)

  19. Fu P, Dafalias YF (2011) Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int J Numer Anal Methods Geomech 35:1918–1948

    Article  Google Scholar 

  20. Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotech 7:177–192

    Article  Google Scholar 

  21. Gajo A, Muir Wood D (1999) Severn-Trent sand: a kinematic-hardening constitutive model: the qp formulation. Géotechnique 45(5):595–614

    Article  Google Scholar 

  22. Gajo A, Piffer L (1999) The effects of preloading history on the undrained behavior of saturated loose sand. Soils Found 39(6):43–54

    Article  Google Scholar 

  23. Gajo A, Bigoni D, Muir Wood D (2001) Stress induced elastic anisotropy and strain localisation in sand. In: Mühlhaus H-B, Dyskin A, Pasternak E (eds) Bifurcation and localisation: theory in geomechanics. Swet and Zeitlinger Lisse, Leiden, pp 37–44

    Google Scholar 

  24. Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38:370–390

    Article  Google Scholar 

  25. Golchin A, Lashkari A (2014) A critical state sand model with elastic–plastic coupling. Int J Solids Struct 51:2807–2825

    Article  Google Scholar 

  26. Graham J, Houlsby GT (1983) Anisotropic elasticity of a natural clay. Géotechnique 33(2):165–180

    Article  Google Scholar 

  27. Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. ASCE J Soil Mech Found Eng Div 89(SM1):33–65

    Google Scholar 

  28. Hertz H (1882) Ueber die Berührung fester elastischer Körper. J Reine Angewandte Math 92:156–171

    MathSciNet  Google Scholar 

  29. Hicher P-Y (2013) Modeling the impact of particle removal on granular material behavior. Géotechnique 63(2):118–128

    Article  Google Scholar 

  30. Hill R (1958) A general theory of uniqueness and stability in elastic–plastic solids. J Mech Phys Solids 6(3):236–249

    Article  MATH  Google Scholar 

  31. Huang Y-T, Huang A-B, Kuo Y-C, Tsai M-D (2004) A laboratory study on the undrained strength of silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24:733–743

    Article  Google Scholar 

  32. Hueckel T (1976) Coupling of elastic and plastic deformation of bulk solids. Meccanica 11:227–235

    Article  MATH  Google Scholar 

  33. Ishibashi I, Zhang X (1993) Unified dynamic shear modulus and damping ratios of sand and clay. Soils Found 33(1):182–191

    Article  Google Scholar 

  34. Ishihara K (1996) Soil behavior in earthquake geotechnics. Oxford Science Publications, Oxford

    Google Scholar 

  35. Ishihara K, Haeri SM, Moinfar AA, Towhata I, Tsujino S (1992) Geotechnical aspects of the June 20, 1990 Manjil earthquake in Iran. Soils Found 32(3):61–78

    Article  Google Scholar 

  36. Iwasaki T, Tatsuoka F, Takagi Y (1978) Shear moduli of sands under cyclic torsional loading. Soils Found 18(1):39–56

    Article  Google Scholar 

  37. Kato S, Ishihara K, Towhata I (2001) Undrained shear characteristics of saturated sand under anisotropic consolidation. Soils Found 41(1):1–11

    Article  Google Scholar 

  38. Kaviani-Hamedani F (2013) Experimental study of the behavior of Firoozkuh sand subjected to different stress paths. M.Sc. thesis, Amir-Kabir University of Technology, Tehran, Iran (in Persian)

  39. Kokusho T (1980) Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found 20(2):45–60

    Article  Google Scholar 

  40. Koseki J, Kawakami S, Nagayama H, Sato T (2000) Change of small strain quasi-elastic deformation properties during undrained cyclic torsional shear and triaxial tests of Toyoura sand. Soils Found 40(3):101–110

    Article  Google Scholar 

  41. Lade PV (1993) Initiation of static instability in the submarine Nerlerk berm. Can Geotech J 30(6):895–904

    Article  Google Scholar 

  42. Lashkari A (2010) A SANISAND model with anisotropic elasticity. Soil Dyn Earthq Eng 30:1462–1477

    Article  Google Scholar 

  43. Lashkari A (2014) Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dyn Earthq Eng 61–62:212–238

    Article  Google Scholar 

  44. Lashkari A, Golchin A (2014) On the influence of elastic–plastic coupling on sands response. Comput Geotech 55:352–364

    Article  Google Scholar 

  45. Lashkari A, Latifi M (2008) A non-coaxial constitutive model for sand deformation under rotation of principal stress axes. Int J Numer Anal Methods Geomech 32:1051–1086

    Article  MATH  Google Scholar 

  46. Lefebvre P (1987) Approche statistique de l’incretitude de l’essai triaxial en mécanique de sols. DEA de Mécanique, Université de Grenoble, Grenoble

    Google Scholar 

  47. Li XS (2002) A sand model with state-dependent dilatancy. Géotechnique 52(3):173–186

    Article  Google Scholar 

  48. Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils. Géotechnique 50(4):449–460

    Article  Google Scholar 

  49. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. ASCE J Eng Mech 138(3):263–275

    Article  Google Scholar 

  50. Li XS, Wang Y (1998) Linear representation of steady state line for sands. ASCE J Geotech Geoenviron Eng 124(12):1215–1217

    Article  Google Scholar 

  51. Li X, Yu H-S (2010) Numerical investigation of granular material behavior under rotational shear. Géotechnique 60(5):381–394

    Article  Google Scholar 

  52. Li X, Yu H-S (2013) On the stress–force–fabric relationship for granular materials. Int J Solids Struct 50:1285–1302

    Article  Google Scholar 

  53. Lo SR, Rahman MM, Bobei DC (2008) Limited flow behavior of sand with fines under monotonic and cyclic loading. Geomech Geoeng Int J 5(1):15–25

    Article  Google Scholar 

  54. Loukidis D, Salgado R (2009) Modeling sand response using two-surface plasticity. Comput Geotech 36:166–186

    Article  Google Scholar 

  55. Maier G, Hueckel T (1977) Non-associated and coupled flow rules of elastoplasticity for geotechnical media. In: Proceedings of 9th international conference on soil mechanics and foundation engineering. Special session 7, constitutive relations for soils. Tokyo, Japan, pp 129–142

  56. Manzari MT, Dafalias YF (1997) A critical state two surface plasticity model for sands. Géotechnique 47(2):255–272

    Article  Google Scholar 

  57. Md. Baki AL, Rahman MM, Lo SR, Gnanendran CT (2012) Linkage between static and cyclic liquefaction of loose sand with a range of fines contents. Can Geotech J 49:891–906

    Article  Google Scholar 

  58. Md. Baki AL, Rahman MM, Lo SR (2014) Predicting onset of cyclic instability of loose sand with fines using instability curves. Soil Dyn Earthq Eng 61–62:140–151

    Article  Google Scholar 

  59. Meghachou M (1992) Stabilité des sables laches: essays et modélisations. Ph.D. thesis, Université d’Oran

  60. Mihalache C, Buscarnera G (2014) Mathematical identification of diffuse and localized instabilities in fluid-saturated sands. Int J Numer Anal Methods Geomech 38:111–141

    Article  Google Scholar 

  61. Minh NM, Cheng YP, Thornton C (2014) Strong force networks in granular mixtures. Granul Matter 16:69–78

    Article  Google Scholar 

  62. Miura K, Miura S, Toki S (1986) Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils Found 26(1):36–52

    Article  Google Scholar 

  63. Mizanur RM, Lo SR (2012) Predicting the onset of static liquefaction of loose sand with fines. ASCE J Geotech Geoenviron Eng 138(8):1037–1041

    Article  Google Scholar 

  64. Mohammadi A, Qadimi A (2014) A simple critical state approach to prediction the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio. Acta Geotech. doi:10.1007/s11440-014-0318-z

    Google Scholar 

  65. Mohammadnejad T, Andrade JE (2015) Flow liquefaction instability prediction using finite elements. Acta Geotech 10:83–100

    Article  Google Scholar 

  66. Muir Wood D, Maeda K (2008) Changing grading of soil: effect on critical state. Acta Geotech 3:3–14

    Article  Google Scholar 

  67. Murthy TG, Loukidis D, Carraro JAH, Prezzi M, Salgado R (2007) Undrained monotonic response of clean and silty sands. Géotechnique 57(3):273–288

    Article  Google Scholar 

  68. Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Géotechnique 54(9):561–569

    Article  Google Scholar 

  69. Nova R (1994) Controllability of the incremental response of soil specimens subjected to arbitrary loading programs. J Mech Behav Mater 5:193–201

    Article  Google Scholar 

  70. Oztoprak S, Bolton MD (2013) Stiffness of sand through a laboratory test database. Géotechnique 63(1):54–70

    Article  Google Scholar 

  71. Papadimitriou AG, Bouckovalas GD (2002) Plasticity model for sand under small and large cyclic strain: a multiaxial formulation. Soil Dyn Earthq Eng 22(3):191–204

    Article  Google Scholar 

  72. Papadopoulou A, Tika T (2008) The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found 48(5):713–725

    Article  Google Scholar 

  73. Pastor M, Zienkiewicz OC, Chan AHC (1990) Generalized plasticity and modeling of soil behavior. Int J Numer Anal Methods Geomech 14(3):151–190

    Article  MATH  Google Scholar 

  74. Rahman MM, Lo SR (2008) The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoeng Int J 3(3):179–190

    Article  Google Scholar 

  75. Rahman MM, Lo SR, Gnanendran CT (2008) On equivalent granular void ratio and steady state behavior of loose sand with fines. Can Geotech J 45:1439–1456

    Article  Google Scholar 

  76. Rahman MdM, Lo SR, Md Baki AL (2011) Equivalent granular state parameter and undrained behavior of sand–fines mixtures. Acta Geotech 6:183–194

    Article  Google Scholar 

  77. Rahman MM, Cubrinovski M, Lo SR (2012) Initial shear modulus of sandy soils and equivalent granular void ratio. Geomech Geoeng Int J 7(3):219–226

    Article  Google Scholar 

  78. Rahman MM, Lo S-CR, Dafalias YF (2014) Modeling the static liquefaction of sand with low-plasticity fines. Géotechnique 64(11):881–894

    Article  Google Scholar 

  79. Seed HB, Lee KL, Idriss IM, Makdisi FI (1971) The slides in the San Fernando Dams during the earthquake of February 9, 1971. ASCE J Geotech Eng Division 101:651–688

    Google Scholar 

  80. Seyedi Hosseininia E (2012) Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul Matter 14(4):483–503

    Article  Google Scholar 

  81. Silver ML, Seed HB (1971) Deformation characteristics of sands under cyclic loading. ASCE J Soil Mech Found Eng Div 97(SM8):1081–1098

    Google Scholar 

  82. Sladen JA, D’Hollander RD, Krahn J (1985) The liquefaction of sands, a collapse surface approach. Can Geotech J 22(4):564–578

    Article  Google Scholar 

  83. Stamatopoulos CA (2010) An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dyn Earthq Eng 30:662–678

    Article  Google Scholar 

  84. Taslimian R, Noorzad A, Maleki Javan MR (2015) Numerical simulation of liquefaction in porous media using nonlinear fluid flow law. Int J Numer Anal Methods Geomech 39:229–250

    Article  Google Scholar 

  85. Than Trong Tran H, Wong H, Dubujet Ph, Doanh T (2014) Simulating the effects of induced anisotropy on liquefaction potential using a new constitutive model. Int J Numer Anal Methods Geomech 38(10):1013–1035

    Article  Google Scholar 

  86. Thevanayagam S, Martin GR (2002) Liquefaction in silty soils—screening and remediation issue. Soil Dyn Earthq Eng 22:1035–1042

    Article  Google Scholar 

  87. Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. ASCE J Geotech Geoenviron Eng 128(10):849–859

    Article  Google Scholar 

  88. Vahidi-Nia F, Lashkari A, Binesh SM (2015) An insight into the mechanical behavior of binary granular soils. Particuology 21:82–89

    Article  Google Scholar 

  89. Verdugo R, Ishihara K (1996) The steady state of sandy soils. Soils Found 36(2):81–91

    Article  Google Scholar 

  90. Wang G, Xie Y (2014) Modified bounding surface hypoplasticity model for sands under cyclic loading. ASCE J Eng Mech 140(1):91–101

    Article  Google Scholar 

  91. Wang ZL, Dafalias YF, Shen CK (1990) Bounding surface hypoplasticity model for sand. ASCE J Eng Mech 116(5):983–1001

    Article  Google Scholar 

  92. Wei LM, Yang J (2014) On the role of grain shape in static liquefaction of sand–silt mixtures. Géotechnique 64(9):740–745

    Article  Google Scholar 

  93. Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand–silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23:183–194

    Article  Google Scholar 

  94. Yamamuro JA, Lade PV (1998) Steady-state concepts and static liquefaction of silty sands. ASCE J Geotech Geoenviron Eng 124(9):868–877

    Article  Google Scholar 

  95. Yamamuro JA, Lade PV (1999) Experiments and modeling of silty sands susceptible to static liquefaction. Mech Cohes Frict Mater 4:545–564

    Article  Google Scholar 

  96. Yamashita S, Toki S (1994) Cyclic deformation characteristics of sand in triaxial and torsional tests. In: The 1st international symposium on pre-failure deformation of geomaterials, Sapporo, vol 1, pp 31–36

  97. Yang SL, Sandven R, Grande L (2006) Instability of sand–silt mixtures. Soil Dyn Earthq Eng 26(2–4):183–190

    Article  Google Scholar 

  98. Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found 38(3):179–188

    Article  Google Scholar 

  99. Zhang J-M, Wang G (2012) Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotech 7:69–113

    Article  Google Scholar 

  100. Zhao J, Gao Z (2015) Unified anisotropic elastoplastic model for sand. ASCE J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.000962

    Google Scholar 

  101. Zlatović S, Ishihara K (1995) On the influence of nonplastic fines on residual strength. In: Ishihara K, Balkema AA (eds) Proceedings of IS-Tokyo’95, the 1st international conference on earthquake geotechnical engineering, Rotterdam, pp 239–244

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lashkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkari, A. Prediction of flow liquefaction instability of clean and silty sands. Acta Geotech. 11, 987–1014 (2016). https://doi.org/10.1007/s11440-015-0413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0413-9

Keywords

Navigation