Skip to main content
Log in

Interface energetics and engineering of organic heterostructures in organic photovoltaic cells

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic (OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang CW. Appl Phys Lett, 1986; 48: 183–185

    Article  CAS  Google Scholar 

  2. Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015; 27: 1035–1041

    Article  CAS  Google Scholar 

  3. Ni W, Li MM, Wan XJ, Zuo Y, Kan B, Feng HR, Zhang Q, Chen YS. Sci China Chem, 2015; 58: 339–346

    Article  CAS  Google Scholar 

  4. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. Adv Mater, 2006; 18: 572–576

    Article  CAS  Google Scholar 

  5. Xue J, Rand BP, Uchida S, Forrest SR. Adv Mater, 2005; 17: 66–71

    Article  CAS  Google Scholar 

  6. Drechsel J, Männig B, Kozlowski F, Pfeiffer M, Leo K, Hoppe H. Appl Phys Lett, 2005, 86: 244102

    Article  Google Scholar 

  7. Shrotriya V, Wu EHE, Li G, Yao Y, Yang Y. Appl Phys Lett, 2006, 88: 064104

    Article  Google Scholar 

  8. Haeldermans I, Vandewal K, Oosterbaan WD, Gadisa A, D’Haen J, Van Bael MK, Manca JV, Mullens J. Appl Phys Lett, 2008, 93: 223302

    Article  Google Scholar 

  9. Yang X, Liu WQ, Chen HZ. Sci China Chem, 2015; 58: 210–220

    Article  CAS  Google Scholar 

  10. Xu ZQ, Yang JP, Sun FZ, Lee ST, Li YQ, Tang JX. Org Electron, 2012; 13: 697–704

    Article  CAS  Google Scholar 

  11. Peumans P, Forrest SR. Appl Phys Lett, 2001; 79: 126–128

    Article  CAS  Google Scholar 

  12. Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813

    Article  CAS  Google Scholar 

  13. Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, Jiang K, Lin HR, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    Article  CAS  Google Scholar 

  14. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015; 58: 248–256

    Article  CAS  Google Scholar 

  15. He ZC, Xiao B, Liu F, Wu HB, Yang YL, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015; 9: 174–179

    Article  CAS  Google Scholar 

  16. Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472

    Article  CAS  Google Scholar 

  17. Greiner MT, Helander MG, Tang WM, Wang ZB, Qiu J, Lu ZH. Nat Mater, 2012; 11: 76–81

    Article  CAS  Google Scholar 

  18. Ou QD, Li C, Li YQ, Tang JX. J Electron Spectrosc Relat Phenom, 2015; 204: 186–195

    Article  CAS  Google Scholar 

  19. Gadisa A, Svensson M, Andersson MR, Inganäs O. Appl Phys Lett, 2004; 84: 1609–1611

    Article  CAS  Google Scholar 

  20. Mutolo KL, Mayo EI, Rand BP, Forrest SR, Thompson ME. J Am Chem Soc, 2006; 128: 8108–8109

    Article  CAS  Google Scholar 

  21. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ. Adv Mater, 2006; 18: 789–794

    Article  CAS  Google Scholar 

  22. Rand BP, Burk DP, Forrest SR. Phys Rev B, 2007, 75: 115327

    Article  Google Scholar 

  23. Tang JX, Lau KM, Lee CS, Lee ST. Appl Phys Lett, 2006, 88: 232103

    Article  Google Scholar 

  24. Tang JX, Lee CS, Lee ST. J Appl Phys, 2007, 101: 064504

    Article  Google Scholar 

  25. Zhou YC, Liu ZT, Tang JX, Lee CS, Lee ST. J Electron Spectrosc Relat Phenom, 2009; 174: 35–39

    Article  CAS  Google Scholar 

  26. Braun S, De Jong MP, Osikowicz W, Salaneck WR. Appl Phys Lett, 2007, 91: 202103–202108

    Article  Google Scholar 

  27. Yang F, Shtein M, Forrest SR. Nat Mater, 2005; 4: 37–41

    Article  Google Scholar 

  28. Liao L, Klubek K, Tang C. Appl Phys Lett, 2004; 84: 167–169

    Article  CAS  Google Scholar 

  29. Wei HX, Ou QD, Zhang Z, Li J, Li YQ, Lee ST, Tang JX. Org Electron, 2013; 14: 839–844

    Article  CAS  Google Scholar 

  30. Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A. Adv Mater, 2012; 24: 5408–5427

    Article  CAS  Google Scholar 

  31. Lüssem B, Riede M, Leo K. Physica Status Solidi A, 2013; 210: 9–43

    Article  Google Scholar 

  32. Salzmann I, Heimel G, Duhm S, Oehzelt M, Pingel P, George BM, Schnegg A, Lips K, Blum RP, Vollmer A, Koch N. Phys Rev Lett, 2012, 108: 035502

    Article  Google Scholar 

  33. Mendez H, Heimel G, Opitz A, Sauer K, Barkowski P, Oehzelt M, Soeda J, Okamoto T, Takeya J, Arlin JB, Balandier JY, Geerts Y, Koch N, Salzmann I. Angew Chem Int Ed, 2013; 52: 7751–7755

    Article  CAS  Google Scholar 

  34. Hsiao YC, Wu T, Zang HD, Li MX, Hu B. Sci China Chem, 2015; 58: 239–247

    Article  CAS  Google Scholar 

  35. Ishii H, Sugiyama K, Ito E, Seki K. Adv Mater, 1999; 11: 605–625

    Article  CAS  Google Scholar 

  36. Oehzelt M, Koch N, Heimel G. Nat Commun, 2014, 5: 4174

    Article  CAS  Google Scholar 

  37. Gao W, Kahn A. Appl Phys Lett, 2003; 82: 4815–4817

    Article  CAS  Google Scholar 

  38. Zhou Y, Li C, Xie HJ, Li YQ, Duhm S, Tang JX. Adv Mater Interf, 2015, 2: 1500095

    Google Scholar 

  39. Ratcliff EL, Meyer J, Steirer KX, Armstrong NR, Olson D, Kahn A. Org Electron, 2012; 13: 744–749

    Article  CAS  Google Scholar 

  40. Nakanishi R, Nogimura A, Eguchi R, Kanai K. Org Electron, 2014; 15: 2912–2921

    Article  CAS  Google Scholar 

  41. Bao Q, Sandberg O, Dagnelund D, Sanden S, Braun S, Aarnio H, Liu X, Chen WM, Österbacka R, Fahlman M. Adv Funct Mater, 2014; 24: 6309–6316

    Article  CAS  Google Scholar 

  42. Xu Z, Chen LM, Chen MH, Li G, Yang Y. Appl Phys Lett, 2009, 95: 013301–013303

    Article  Google Scholar 

  43. Wei HX, Li J, Cai Y, Xu ZQ, Lee ST, Li YQ, Tang JX. Org Electron, 2011; 12: 1422–1428

    Article  CAS  Google Scholar 

  44. Ng TW, Lo MF, Fung MK, Lai SL, Liu ZT, Lee CS, Lee ST. Appl Phys Lett, 2009, 95: 203303

    Article  Google Scholar 

  45. Park SH, Jeong JG, Kim HJ, Park SH, Cho MH, Cho SW, Yi YJ, Heo MY, Sohn H. Appl Phys Lett, 2010, 96: 013302

    Article  Google Scholar 

  46. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012; 338: 643–647

    Article  CAS  Google Scholar 

  47. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013; 499: 316–319

    Article  CAS  Google Scholar 

  48. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014; 345: 542–546

    Article  CAS  Google Scholar 

  49. Xiao JY, Shi JJ, Li DM, Meng QB. Sci China Chem, 2015; 58: 221–238

    Article  CAS  Google Scholar 

  50. Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A. Energy Environ Sci, 2014; 7: 1377–1381

    Article  CAS  Google Scholar 

  51. Wang QK, Wang RB, Shen PF, Li C, Li YQ, Liu LJ, Duhm S, Tang JX. Advd Mater Interf, 2015, 2: 1400528

    Google Scholar 

  52. Xu Z, Chen LM, Yang G, Huang CH, Hou J, Wu Y, Li G, Hsu CS, Yang Y. Adv Funct Mater, 2009; 19: 1227–1234

    Article  CAS  Google Scholar 

  53. Jia T, Zhou WL, Li FH, Gao YJ, Wang L, Han JX, Zhang JY, Wang Y. Sci China Chem, 2015; 58: 323–330

    Article  CAS  Google Scholar 

  54. Tang J, Li Y, Zheng L, Hung L. J Appl Phys, 2004; 95: 4397–4403

    Article  CAS  Google Scholar 

  55. Werner A, Li F, Harada K, Pfeiffer M, Fritz T, Leo K, Machill S. Adv Funct Mater, 2004; 14: 255–260

    Article  CAS  Google Scholar 

  56. Yang QQ, Wang JT, Zhang XQ, Zhang J, Fu YY, Xie ZY. Sci China Chem, 2015; 58: 309–316

    Article  CAS  Google Scholar 

  57. Nian L, Zhou JD, Zeng K, Wu XY, Liu LL, Xie ZQ, Huang F, Ma YG. Sci China Chem, 2015; 58: 317–322

    Article  CAS  Google Scholar 

  58. Motiei L, Yao Y, Choudhury J, Yan H, Marks TJ, Van Der Boom ME, Facchetti A. J Am Chem Soc, 2010, 132: 12528–12530

    Article  CAS  Google Scholar 

  59. Xu ZQ, Sun FZ, Li J, Lee ST, Li YQ, Tang JX. Appl Phys Lett, 2011, 99: 203301

    Article  Google Scholar 

  60. Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou JH, Li YF. Adv Mater, 2013; 24: 1476–1481

    Article  Google Scholar 

  61. Wang FX, Xiong T, Qiao XF, Ma DG. Org Electron, 2009; 10: 266–274

    Article  CAS  Google Scholar 

  62. Yang JP, Xiao Y, Deng YH, Duhm S, Ueno N, Lee ST, Li YQ, Tang JX. Adv Funct Mater, 2012; 22: 600–608

    Article  CAS  Google Scholar 

  63. Cai Y, Wei X, Li J, Bao QY, Zhao X, Lee ST, Li YQ, Tang JX. Appl Phys Lett, 2011, 98:113304

    Article  Google Scholar 

  64. Zhao J, Cai Y, Yang JP, Wei HX, Deng YH, Li YQ, Lee ST, Tang JX. Appl Phys Lett, 2012, 101:193303

    Article  Google Scholar 

  65. Shi AL, Li YQ, Xu ZQ, Sun FZ, Li J, Shi XB, Wei HX, Lee ST, Kera S, Ueno N, Tang JX. Org Electron, 2013; 14: 1844–1851

    Article  CAS  Google Scholar 

  66. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ. Science, 2007; 317: 222–225

    Article  CAS  Google Scholar 

  67. Dou LT, You JB, Yang J, Chen CC, He YJ, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat Photon, 2012; 6: 180–185

    Article  CAS  Google Scholar 

  68. Ameri T, Li N, Brabec CJ. Energy Environ Sci, 2013; 6: 2390–2413

    Article  CAS  Google Scholar 

  69. Timmreck R, Olthof S, Leo K, Riede MK. J Appl Phys, 2010, 108: 033108

    Article  Google Scholar 

  70. Sista S, Park MH, Hong Z, Wu Y, Hou J, Kwan WL, Li G, Yang Y. Adv Mater, 2010; 22: 380–383

    Article  CAS  Google Scholar 

  71. Hadipour A, De Boer B, Blom PWM. Adv Funct Mater, 2008; 18: 169–181

    Article  CAS  Google Scholar 

  72. Sun XW, Zhao DW, Ke L, Kyaw AKK, Lo GQ, Kwong DL. Appl Phys Lett, 2010, 97: 053303

    Article  Google Scholar 

  73. Gilot J, Wienk MM, Janssen RA. Adv Mater, 2010, 22: E67–E71

    Article  CAS  Google Scholar 

  74. Janssen AGF, Riedl T, Hamwi S, Johannes HH, Kowalsky W. Appl Phys Lett, 2007, 91: 073519

    Article  Google Scholar 

  75. Li J, Bao QY, Wei HX, Xu ZQ, Yang JP, Li YQ, Lee ST, Tang JX. J Mater Chem, 2012; 22: 6285–6290

    Article  CAS  Google Scholar 

  76. Wang RB, Wang QK, Xie HJ, Xu LH, Duhm S, Li YQ, Tang JX. ACS Appl Mater Interf, 2014, 6: 15604–15609

    CAS  Google Scholar 

  77. Wang JC, Ren XC, Shi SQ, Leung CW, Chan PKL. Org Electron, 2011, 12L: 880–885

    Article  Google Scholar 

  78. Sims L, Hörmann U, Hanfland R, MacKenzie RC, Kogler FR, Steim R, Brütting W, Schilinsky P. Org Electron, 2014; 15: 2862–2867

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Xin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Wang, QK., Ou, QD. et al. Interface energetics and engineering of organic heterostructures in organic photovoltaic cells. Sci. China Chem. 59, 422–435 (2016). https://doi.org/10.1007/s11426-015-5524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5524-5

Keywords

Navigation