Skip to main content
Log in

Addressing dynamic photovoltaic processes at electrode:active layer and donor:acceptor interfaces in organic solar cells under device-operating conditions

  • Feature Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This article presents our experimental studies to unravel the dynamic photovoltaic processes occurring at donor:acceptor (D:A) and electrode:active layer (E:A) interfaces under device-operating conditions by using two unique magneto-optical measurements, namely photo-induced capacitance and magnetic field effect measurement. First, we have found that a higher surface polarization of dielectric thin film can decrease the surface charge accumulation at E:A interface. The photo-induced capacitance results indicate that dielectric thin film plays a crucial role in the charge collection in generating photocurrent in organic solar cells. Second, our experimental results from magnetic field effect show that the binding energies of charge transfer (CT) states at D:A interface can be evaluated by using the critical bias required to completely dissociate the CT states. This is the first experimental demonstration that the binding energies of CT states can be measured under deviceoperating conditions. Furthermore, we use our measurement of magnetic field effect to investigate the most popular organic photovoltaic solar cells, organometal halide perovskite photovoltaic devices. The results of magneto-photoluminescence show that the photogenerated electrons and holes are inevitably recombined into electron-hole pairs through a spin-dependent process in the perovskites. Therefore, using spin polarizations can present a new design to control the photovoltaic loss in perovskites-based photovoltaic devices. Also, we found that introducing D:A interface can largely affect the bulk charge dissociation and recombination in perovskite solar cells. This indicates that the interfacial and bulk photovoltaic processes are internally coupled in developing photovoltaic actions in perovskite devices. Clearly, these magneto-optical measurements show a great potential to unravel the deeper photovoltaic processes occurring at D:A and E:A interfaces in both organic bulk-heterojunction and perovskite solar cells under device-operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao G, He Y, Li Y. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 2010, 22: 4355–4358

    Article  CAS  Google Scholar 

  2. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  3. He Y, Chen HY, Hou J, Li Y. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377–1382

    Article  CAS  Google Scholar 

  4. Su MS, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH. Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv Mater, 2011, 23: 3315–3319

    Article  CAS  Google Scholar 

  5. Zang H, Liang Y, Yu L, Hu B. Intra-molecular donor-acceptor interaction effects on charge dissociation, charge transport, and charge collection in bulk-heterojunction organic solar cells. Adv Energy Mater, 2011, 1: 923–929

    Article  CAS  Google Scholar 

  6. Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclers M, Lee K, Heeger AJ. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon, 2009, 3: 297–302

    Article  CAS  Google Scholar 

  7. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon, 2012, 6: 591–595

    Google Scholar 

  8. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499: 316–320

    Article  CAS  Google Scholar 

  9. You J, Hong Z, Yang M, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8: 1674–1680

    Article  CAS  Google Scholar 

  10. Chen Q, Zhou H, Hong Z, Luo S, Duan HS, Wang HH, Liu Y, Li G, Yang Y. Planar heterojunctionperovskite solar cells via vapor-assisted solution process. J Am Chem Soc, 2014, 136: 622–625

    Article  CAS  Google Scholar 

  11. Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunctionperovskite solar cells by vapour deposition. Nature, 2013, 501: 395–399

    Article  CAS  Google Scholar 

  12. Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Bolink HJ. Perovskite solar cells employing organic charge-transport layers. Nat Photon, 2014, 8: 128–132

    Article  CAS  Google Scholar 

  13. You J, Chen CC, Dou L, Murase S, Duan HS, Hawks SA, Xu T, Xu HJ, Yu L, Li G, Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Adv Mater, 2012, 24: 5267–5272

    Article  CAS  Google Scholar 

  14. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat Mater, 2008, 7: 158–164

    Article  CAS  Google Scholar 

  15. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater, 2006, 18: 572–576

    Article  CAS  Google Scholar 

  16. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T, Sojoudi H, Barlow S, Graham S, Bredas J, Marder S, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327–332

    Article  CAS  Google Scholar 

  17. Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hing Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542–546

    Article  CAS  Google Scholar 

  18. Jeng JY, Chen KC, Chiang TY, Lin PY, Tsai TD, Chang YC, Guo TF, Chen P, Wen TC, Hsu YJ. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater, 2014, 26: 4107–4113

    Article  CAS  Google Scholar 

  19. Zang H, Hsiao YC, Hu B. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis. Phys Chem Chem Phys, 2014, 16: 4971–4976

    Article  CAS  Google Scholar 

  20. Hsiao YC, Zang H, Ivanov I, Xu T, Lu L, Yu L, Hu B. Dielectric interface effects on surface charge accumulation and collection towards high-efficiency organic solar cells. J Appl Phys, 2014, 115, 154506

    Article  Google Scholar 

  21. Boix PP, Ajuria J, Pacios R, Garcia-Belmonte G. Carrier recombination losses in inverted polymer: fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques. J Appl Phys, 2011, 109: 074514

    Article  Google Scholar 

  22. Savva A, Petraki F, Elefteriou P, Sygellou L, Voigt M, Giannouli M, Kennou S, Nelson J, Bradley DDC, Brabec CJ, Choulis SA. The effect of organic and metal oxide interfacial layers on the performance of inverted organic photovoltaics. Adv Energy Mater, 2013, 3: 391–398

    Article  CAS  Google Scholar 

  23. Xia R, Leem DS, Kirchartz T, Spencer S, Murphy C, He Z, Wu H, Su S, Cao Y, Kim JS, deMello JC, Bradley DDC, Nelson J. A high-performing solution-processed small molecule: perylenediimide bulk heterojunction solar cell. Adv Energy Mater, 2013, 3: 718–723

    Article  CAS  Google Scholar 

  24. Boix PP, Ajuria J, Etxebarria I, Pacios R, Garcia-Belmont G, Bisquert J. Role of ZnO electron-selective layers in regular and inverted bulk heterojunction solar cells. Phys Chem Lett, 2011, 2: 407–411

    Article  CAS  Google Scholar 

  25. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  Google Scholar 

  26. Huang J, Xu Z, Yang Y. Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv Funct Mater, 2007, 17: 1966–1973

    Article  CAS  Google Scholar 

  27. Prada S, Martinez U, Pacchioni G. Work function changes induced by deposition of ultrathin dielectric films on metals: a theoretical analysis. Phys Rev B, 2008, 78: 235423

    Article  Google Scholar 

  28. Khodabakhsh S, Sanderson BM, Nelson J, Jones TS. Using self-assembling dipole molecules to improve charge collection in molecular solar cells. Adv Funct Mater, 2006, 16: 95–100

    Article  CAS  Google Scholar 

  29. Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH. Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3. Adv Funct Mater, 2013, 23: 215–226

    Article  CAS  Google Scholar 

  30. Ameri T, Dennler G, Waldauf C, Azimi H, Seemann A, Forberich K, Hauch J, Scharber M, Hingerl K, Brabec CJ. Fabrication, optical modeling, and color characterization of semitransparent bulk-hetero-junction organic solar cells in an inverted structure. Adv Funct Mater, 2010, 20: 1592–1598

    Article  CAS  Google Scholar 

  31. Zhou Y, Tvingstedt K, Zhang F, Du C, Ni WX, Andersson M, Inganas O. Lateral phase separation gradients in spin-coated thin films of high-performance polymer: fullerene photovoltaic blends. Adv Funct Mater, 2009, 19: 1–7

    Google Scholar 

  32. Tvingstedt K, Vandewal K, Gadisa A, Zhang F, Manca J, Inganas O. Electroluminescence from charge transfer states in polymer solar cells. J Am Chem Soc, 2009, 131: 11819–11824

    Article  CAS  Google Scholar 

  33. Koster LJA, Mihailetchi VD, Blom PWM. Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett, 2006, 88: 052104

    Article  Google Scholar 

  34. Hwang IW, Soci C, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger A. Ultrafast electron transfer and decay dynamics in a small band gap bulk heterojunction material. Adv Mater, 2007, 19: 2307–2312

    Article  CAS  Google Scholar 

  35. De S, Pascher T, Maiti M, Jespersen K, Kesti T, Zhang F, Inganas O, Yartsev A, Sundstrom V. Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. J Am Chem Soc, 2007, 129: 8466–8472

    Article  CAS  Google Scholar 

  36. Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR. Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater, 2008, 18: 4029–4035

    Article  CAS  Google Scholar 

  37. Scharber MC, Schultz NA, Sariciftci NS, Brabec CJ. Optical-and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites. Phys Rev B, 2003, 67: 085202

    Article  Google Scholar 

  38. Deibel C, Strobel T, Dyakonov V. Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater, 2010, 22: 4097–4111

    Article  CAS  Google Scholar 

  39. Burke TM, McGehee MD. How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency. Adv Mater, 2013, 26: 1923–1928

    Article  Google Scholar 

  40. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat Mater, 2009, 8: 904–909

    Article  CAS  Google Scholar 

  41. Vandewal K, Gadisa A, Oosterbaan WD, Bertho S, Banishoeib F, Van Severen I, Lutsen L, Cleij TJ, Vanderzande D, Manca JV. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv Funct Mater, 2008, 18: 2064–2070

    Article  CAS  Google Scholar 

  42. Brocklehurst B, Dixon RS, Gardy EM, Lopata VJ, Quinn MJ, Singh A, Sargent FP. The effect of a magnetic field on the singlet/triplet ratio in geminate ion recombination. Chem Phys Lett, 1974, 28: 361–363

    Article  CAS  Google Scholar 

  43. Schulten K, Staerk H, Weller A, Werner HJ, Nickel BZ. Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents. Phys. Chem. N. F. 1976, 101: 371–390

    Article  CAS  Google Scholar 

  44. Okamoto K, Oda N, Itaya A, Kusabayashi S. Magnetic field effect on the photoconductivity of poly-n-vinylcarbazole. Chem Phys Lett, 1975, 35: 483–486

    Article  CAS  Google Scholar 

  45. Xu ZH, Hu B. Photovoltaic processes of singlet and triplet excited states in organic solar cells. Adv Funct Mater, 2008, 18: 2611–2617

    Article  CAS  Google Scholar 

  46. Kalinowski J, Godlewski J. Magnetic field effects on recombination radiation in tetracene crystal.Chem Phys Lett, 1975, 36: 345–348

    Article  CAS  Google Scholar 

  47. Wohlgenannt M, Vardeny ZV. Spin-dependent exciton formation rates in π-conjugated materials. J Phys: Condens Matter, 2003, 15: R83–R107

    CAS  Google Scholar 

  48. Zhang Y, Basel TP, Gautam BR, Yang X, Mascaro DJ, Liu F, Vardeny ZV. Spin-enhanced organic bulk heterojunction photovoltaic solar cells. Nat Commun, 2012, 3: 1043

    Article  Google Scholar 

  49. Ehrenfreund E, Vardeny ZV. Effects of magnetic field on conductance and electroluminescence in organic devices. Isr J Chem, 2012, 52: 552–562

    Article  CAS  Google Scholar 

  50. Shakya P, Desai P, Kreouzis T, Gillin WP, Tuladhar SM, Ballantyne AM, Nelson J. The effect of applied magnetic field on photocurrent generation in poly-3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester photovoltaic devices. J Phy: Condens Matter, 2008, 20: 452203

    Google Scholar 

  51. van Mensfoort SL, Coehoorn R. Determination of injection barriers in organic semiconductor devices from capacitance measurements. Phys Rev Lett, 2008, 100: 086802

    Article  Google Scholar 

  52. Singh-Bhalla G, Bell C, Ravichandran J, Siemons W, Hikita Y, Salahuddin S, Hebard AF, Hwang HY, Ramesh R. Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions. Nat Phys, 2011, 7: 80–86

    Article  CAS  Google Scholar 

  53. Zang H, Xu Z, Hu B. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells. J Phys Chem B, 2010, 114: 5704–5709

    Article  CAS  Google Scholar 

  54. Hirasawa M, Ishihara T, Goto T, Uchida K, Miura N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B: Condensed Matter, 1994, 201: 427–430

    Article  CAS  Google Scholar 

  55. Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith HJ, Atatüre M, Phillips RT, Friend RH. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskitedemiconductors. J Phys Chem Lett, 2014, 5: 1421–1426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, YC., Wu, T., Zang, H. et al. Addressing dynamic photovoltaic processes at electrode:active layer and donor:acceptor interfaces in organic solar cells under device-operating conditions. Sci. China Chem. 58, 239–247 (2015). https://doi.org/10.1007/s11426-014-5280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5280-y

Keywords

Navigation