Skip to main content
Log in

The effect of interfacial diffusion on device performance of polymer solar cells: a quantitative view by active-layer doping

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The diffusion of constituent materials at interfaces is one of the key factors for device performance and stability. In this work, the effect of interfacial diffusion of a classic interfacial material PFN on device performance of polymer solar cells was studied quantitatively by doping PFN into active layer based on P3HT:PC61BM blend. The PCEs of devices with 550 ppm PFN decrease to half compared to those of the control devices without PFN, which are mainly attributed to the decrease of short-circuit current (J sc) and fill factor (FF). Advanced analyses of equivalent circuit, absorption spectra, and atomic force microscopy indicates that the presence of PFN in the active layer increases the leakage current, decreases the aggregation of P3HT, and reduces the phase separation. This research reveals the physical mechanism of interfacial diffusion in device performance and provides a basis for further improving the performance and stability of PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  2. Cheng YJ, Yang SH, Hsu CS. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photonics, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  4. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  5. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  6. Gu C, Chen Y, Zhang Z, Xue S, Sun S, Zhang K, Zhong C, Zhang H, Oan Y, Lv Y, Yang Ym Li F, Zhang S, Huang F, Ma Y. Electrochemical route to fabricate film-like congjugated microporous polymers and application for organic electronics. Adv Mater, 2013, 25: 3443–3448

    Article  CAS  Google Scholar 

  7. Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Effect of additives on the photovoltaic properties of organic solar cells based on triphenylamine-containing amorphous molecules. Sci China Chem, 2014, 57: 966–972

    Article  CAS  Google Scholar 

  8. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Sci China Chem, 2014, 57: 973–981

    Article  CAS  Google Scholar 

  9. Dou L, You J, Yang J, Chen C-C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics, 2012, 6: 180–185

    Article  CAS  Google Scholar 

  10. Jørgensen M, Norrman K, Gevorgyan S A, Tromholy T, Andreasen B, Krebs F C. Stability of polymer solar cells. Adv Mater, 2012, 24: 580–612

    Article  Google Scholar 

  11. Cao H, He W, Mao Y, Lin X, Ishikawa K, Dickerson J H, Hess W P. Recent progress in degradation and stabilization of organic solar cells. J Power Sources, 2014, 264: 168–183

    Article  CAS  Google Scholar 

  12. Jørgensen M, Norrman K, Krebs FC. Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells, 2008, 92: 686–714

    Article  Google Scholar 

  13. Norrman K, Gevorgyan S A, Krebs F C. Water-induced degradation of polymer solar cells studied by H218O labeling. ACS Appl Mater Interfaces, 2009, 1: 102–112

    Article  CAS  Google Scholar 

  14. Jeon S O, Lee J Y. Improved lifetime in organic solar cells using a bilayer cathode of organic interlayer/Al. Sol Energy Mater Sol Cells, 2012, 101, 160–165

    Article  CAS  Google Scholar 

  15. Motaung D E, Malgas G F, Arendse C J. Insights into the stability and thermal degradation of P3HT: C60 blended films for solar cell applications. J Mater Sci, 2011, 46: 4942–4952

    Article  CAS  Google Scholar 

  16. Andersen M, Carle J E, Cruys-Bagger N, Lilliedal M R, M. Ham-mond A, Winther-Jensn B, Krebs F. C. Transparent anodes for polymer photovoltaics: oxygen permeability of PEDOT. Sol Energy Mater Sol Cells, 2007, 91: 539–543

    Article  CAS  Google Scholar 

  17. Huang F, Wu H, Wang D, Yang W, Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater, 2004, 16: 708–716

    Article  CAS  Google Scholar 

  18. Lv M, Li S, Jasieniak J J, Hou J, Zhu J, Tan Z, Watkins S E, Li Y, Chen X. A hyperbranched conjugated polymer as the cathode interlayer for high performance polymer solar cells. Adv Mater, 2013, 25: 6889–6894

    Article  CAS  Google Scholar 

  19. He Z, Zhong C, Huang X, Wong W Y, Wu H, Chen L, Su S, Cao Y. Simultaneous enhancement of open-circuit voltage short-circuit current density, and fill factor in polymer solar cells. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  Google Scholar 

  20. Yip H L, Jen A K. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci, 2012, 5, 5994–6011

    Article  CAS  Google Scholar 

  21. Dang M T, Wantz G, Bejbouji H, Urien M, Dautel O J, Vignau L, Hirsch L. Polymeric solar cells based on P3HT:PC61BM: Role of the casting solvent. Sol Energ Mat Sol C, 2011, 95: 3408–3418

    Article  CAS  Google Scholar 

  22. Duan C, Cai W, Ben B Y, Zhong C, Zhang K, Liu C, Hu Z, Huang F, C. Bazan G, J. Heeger A, Cao Y. Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy Environ Sci, 2013, 6, 3022–3034

    Article  CAS  Google Scholar 

  23. Ma D, Lv M, Lei M, Zhu J, Wang H, Chen X. Self-organization of amine-based cathode interfacial materials in inverted polymer solar cells. ACS Nano, 2014, 8, 1601–1608

    Article  CAS  Google Scholar 

  24. Dang M T, Hirsch L, Wantz G, Wuest JD. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methanol ester system. Chem Rev, 2013, 113: 3734–3765

    Article  CAS  Google Scholar 

  25. Milton J. Rosen Joy T. Kunjappu. Surfactants and Interfacial Phenomena (4th. ed.). New York: Wiley, 2012

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Liu, Zengqi Xie or Yuguang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nian, L., Zhou, J., Zeng, K. et al. The effect of interfacial diffusion on device performance of polymer solar cells: a quantitative view by active-layer doping. Sci. China Chem. 58, 317–322 (2015). https://doi.org/10.1007/s11426-014-5222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5222-8

Keywords

Navigation