Skip to main content
Log in

Combination of extraction tip and MALDI-TOF-MS for efficient separation and analysis of cysteine-containing peptides

  • Articles
  • Special Topic Mass Spectrometry Analysis
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In our work, a new extraction tip with gold-modified polymer is developed. The simple, self-made and extremely economical tips were successfully applied to capture cysteine-containing peptides. The loading capacity of a tip (column bed: 0.3 mm diameter, 5 mm length) is 2–4 μg peptides. We can make one tip in 30 s and each costs less than 0.1 cent. The use of these tips can achieve a stable analysis with less background interference, even for 10 ng target peptides. Compared with other separation techniques, our method can save much time and energy while providing a means to selectively capture cysteine-containing peptides from complex analyte due to the strong interaction. All results showed that our new extraction tips have minimal cost and perfect selectivity; thus they have great potential in sample pretreatment systems for proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem, 1996, 68: 1–8

    Article  CAS  Google Scholar 

  2. Kussmann M, Lassing U, Sturmer CA, Przybylski M, Roepstorff P. Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation. J Mass Spectrom, 1997, 32: 483–493

    Article  CAS  Google Scholar 

  3. Erdjument-Bromage H. Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J Chromatogr A, 1998, 826: 167–181

    Article  CAS  Google Scholar 

  4. Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R, Roepstorff P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom, 1999, 34: 105–116

    Article  CAS  Google Scholar 

  5. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem, 1988, 60: 2299–2301

    Article  CAS  Google Scholar 

  6. Resemann A, Wunderlich D, Rothbauer U, Warscheid B, Leonhardt H, Fuchser J, Kuhlmann K, Suckau D. Top-down de novo protein sequencing of a 13.6 kDa came lid single heavy chain antibody by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry. Anal Chem, 2010, 82: 3283–3292

    Article  CAS  Google Scholar 

  7. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA, 2000, 97: 9390–9395

    Article  CAS  Google Scholar 

  8. Aebersold R. A mass spectrometric journey into protein and proteome research. J Am Soc Mass Spectrom, 2003, 14: 685–695

    Article  CAS  Google Scholar 

  9. Hu L, Ye M, Jiang X, Feng S, Zou H. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis—A review. Anal Chim Acta, 2007, 598: 193–204

    Article  CAS  Google Scholar 

  10. Jmeian Y, El Rassi Z. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Electrophoresis, 2009, 30: 249–261

    Article  CAS  Google Scholar 

  11. Wang SH, Regnier FE. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J Chromatogr A, 2001, 924: 345–357

    Article  CAS  Google Scholar 

  12. Liu T, Qian WJ, Strittmatter EF, Camp DG, Anderson GA, Thrall BD, Smith RD. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem, 2004, 76: 5345–5353

    Article  CAS  Google Scholar 

  13. Wan D, Gao MX, Wang YH, Zhang P, Zhang XM. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J Sep Sci, 2013, 36: 629–635

    Article  CAS  Google Scholar 

  14. Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity. J Proteome Res, 2002, 1: 47–54

    Article  CAS  Google Scholar 

  15. Hahn HW, Rainer M, Ringer T, Huck CW, Bonn GK. Ultrafast microwave-assisted in-tip digestion of proteins. J Proteome Res, 2009, 8: 4225–4230

    Article  CAS  Google Scholar 

  16. Rappsilber J, Ishihama Y, Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelec-trospray, and LC/MS sample pretreatment in proteomics. Anal Chem, 2003, 75: 663–670

    Article  CAS  Google Scholar 

  17. Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, 2007, 2: 1896–1906

    Article  CAS  Google Scholar 

  18. Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem, 2005, 77: 5144–5154

    Article  CAS  Google Scholar 

  19. Ishihama Y, Rappsilber J, Mann M. Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res, 2006, 5: 988–994

    Article  CAS  Google Scholar 

  20. Xu Y, Cao Q, Svec F, Fréchet JM. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem, 2010, 82: 3352–3358

    Article  CAS  Google Scholar 

  21. Hill HD, Mirkin CA. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc, 2006, 1: 324–336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MingXia Gao or XiangMin Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, D., Chen, Q., Gao, M. et al. Combination of extraction tip and MALDI-TOF-MS for efficient separation and analysis of cysteine-containing peptides. Sci. China Chem. 57, 703–707 (2014). https://doi.org/10.1007/s11426-014-5084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5084-0

Keywords

Navigation