Skip to main content

Advertisement

Log in

Salt-affected soils, reclamation, carbon dynamics, and biochar: a review

  • Soils, Sec 3 • Remediation and Management of Contaminated or Degraded Lands • Review Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This paper reviews chemical, physical, and biological problems of salt-affected soils and different reclamation methods applied to rehabilitate these soils.

Methods

Methods to increase C stocks in these lands are discussed with a focus on biochar application as a potential new approach to not only to increase the C content but also to improve soil properties. Gaps in research knowledge in this field are then identified.

Results

Given the concern on the continued worldwide expansion of salt-affected lands and the focus on C sequestration processes, this review has evaluated current knowledge on salt-affected soils and their remediation with organic materials and plants. The review of the published literature has highlighted important gaps in knowledge, which limit our current understanding of rehabilitation of salt-affected soils with organic amendments specially biochar and the associated carbon dynamic. Knowledge about application of biochar in salt-affected soils is scant, and to date, most studies have evaluated biochar use only in nonsalt-affected soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrol I, Yadav J, Massoud F (1988) Salt-affected soils and their managements. Soil Resources, Management and Conservation Service FAO Land and Water Development Division, Rome

    Google Scholar 

  • Adu JK, Oades JM (1978) Physical factors influencing decomposition of organic material in soil aggregates. Soil Biol Biochem 10:109–115

    Article  CAS  Google Scholar 

  • Agassi M, Shainberg I, Morin J (1981) Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation. Soil Sci Soc Am J 45:848–851

    Article  Google Scholar 

  • Ahmad S, Ghafoor A, Qadir M, Aziz MA (2006) Amelioration of a calcareous saline-sodic soil by gypsum application and different crop rotations. Int J Agr Biol 8:142–146

    CAS  Google Scholar 

  • Akhtar SS, Li G, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agr Water Manage 138:37–44

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015a) Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agr Water Manage 158:61–68

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015b) Biochar mitigates salinity stress in potato. J Agron Crop Sci 201:368–378

    Article  CAS  Google Scholar 

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F (2015c) Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol 42:770–781

    Article  CAS  Google Scholar 

  • Amezketa E, Aragues R, Gazol R (2005) Efficiency of sulfuric acid, mined gypsum and two gypsum by products in soil crusting prevention and sodic soil reclamation. Agron J 97:983–989

    Article  CAS  Google Scholar 

  • Ammari TG, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460

    CAS  Google Scholar 

  • Armstrong A, Tanton T (1992) Gypsum application to aggregated saline-sodic clay topsoils. Eur J Soil Sci 43:249–260

    Article  CAS  Google Scholar 

  • Artiola JF, Rasmussen C, Freitas R (2012) Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci 177:561–570

    Article  CAS  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songykhanguthor K, Homma K, Kiyono Y, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84

    Article  Google Scholar 

  • Atkinson C, Fitzgerald J, Hipps N (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Barzegar AR, Nelson PN, Oades JM, Rengasamy P (1997) Organic matter, sodicity and clay type: influence on soil aggregation. Soil Sci Soc Am J 61:1131–1137

    Article  CAS  Google Scholar 

  • Batra L, Manna MC (1997) Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions. Arid Soil Res Rehab 11:295–303

    Article  CAS  Google Scholar 

  • Beltran JMN (1999) Irrigation with saline water: benefits and environmental impact. Agr Water Manage 40:183–194

    Article  Google Scholar 

  • Bhojvaid PP, Timmer VR (1998) Soil dynamics in an age sequence of Prosopis Juliflora planted for sodic soil restoration in India. Forest Ecol Manage 106:181–193

    Article  Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (2001) Soil chemistry. Wiley, New York

    Google Scholar 

  • Brenstein L (1975) Effects of salinity and sodicity on plant growth. Ann Rev Phytopathol 13(1):295–312

    Article  Google Scholar 

  • Brinck E, Frost C (2009) Evaluation of amendments used to prevent sodification of irrigated fields. Appl Geochem 24:2113–2122

    Article  CAS  Google Scholar 

  • Busscher WJ, Novak JM, Ahmedna M (2011) Physical effects of organic matter amendment of southeastern US coastal loamy sand. Soil Sci 176:661–667

    CAS  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

    Article  CAS  Google Scholar 

  • Chaganti VN, Crohn DM (2015) Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 259–260:45–55

    Article  CAS  Google Scholar 

  • Chaganti VN, Crohn DM, Simunek J (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agr Water Manage 158:255–265

    Article  Google Scholar 

  • Chan KY, Xu ZH (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Management: Sci Technol, pp 67–84

  • Chan KY, Van Zwieten L, Meszaros I, Downi A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634

    Article  Google Scholar 

  • Chander K, Goyal S, Kapoor KK (1994) Effect of sodic water irrigation and farmyard manure application on soil microbial biomass and microbial activity. Appl Soil Ecol 1:139–144

    Article  Google Scholar 

  • Chorom M, Rengasamy P (1997) Carbonate chemistry, pH and physical properties of an alkaline sodic soil as affected by various amendments. Aust J Soil Res 35:149–161

    Article  CAS  Google Scholar 

  • Choudhary OP, Josan AS, Bajwa MS, Kapur ML (2004) Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field Crop Res 87:103–116

    Article  Google Scholar 

  • Choudhary OP, Ghuman BS, Bijay S, Thuy N, Buresh RJ (2011) Effects of long term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil. Field Crop Res 121:363–372

    Article  Google Scholar 

  • Clough A, Skjemstad JO (2000) Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Aust J Soil Res 38:1005–1016

    Article  CAS  Google Scholar 

  • Corwin DL, Bradford SA (2008) Environmental impact and sustainability of degraded water reuse. J Environ Qual 37:1–7

    Article  CAS  Google Scholar 

  • Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134

    Article  CAS  Google Scholar 

  • Dalal RC, Mayer RJ (1986) Long term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. II. Total organic carbon and its rate of loss from the soil profile. Aust J Soil Res 24:280–292

    Google Scholar 

  • DeLuca TH, McKenzie MD, Gundale MJ, Holben WE (2006) Wildfire produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  • Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility: a review. Agron Sustain Dev 30:401–422

    Article  CAS  Google Scholar 

  • Dikinya O, Hinz C, Aylmore G (2006) Dispersion and re-deposition of fine particles and their effects on saturated hydraulic conductivity. Soil Res 44:47–56

    Article  CAS  Google Scholar 

  • Djedidi Z, Drogui P, Ben Cheikh R, Mercier G, Blais J (2005) Laboratory study of successive soil saline leaching and electrochemical lead recovery. J Environ Eng 131:305–314

    Article  CAS  Google Scholar 

  • Edward AP, Bremner JM (1967) Microaggregates in soils. Eur J Soil Sci 18:64–73

    Article  Google Scholar 

  • Emdad M, Raine S, Smith R, Fardad H (2004) Effect of water quality on soil structure and infiltration under furrow irrigation. Irrigation Sci 23:55–60

    Article  Google Scholar 

  • Fang Y, Singh B, Singh BP, Krull E (2014) Biochar carbon stability in four contrasting soils. Eur J Soil Sci 65:60–71

    Article  CAS  Google Scholar 

  • Fitzpatrick RW, Merry RH (2000) Pedogenic carbonate pools and climate change in Australia. In: Lal R, Kimble JM, Eswran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, pp 105–120

    Google Scholar 

  • Frankenberger WT, Bingham FT (1982) Influence of salinity on soil enzyme activities. Soil Sci Soc Am J 46:1173–1177

    Article  CAS  Google Scholar 

  • Frenkel H, Goertzen JO, Rhoades JD (1978) Effects of clay type and content, exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci Soc Am J 42:32–39

    Article  CAS  Google Scholar 

  • Gandhi AP, Paliwal KV (1976) Mineralization and gaseous losses of nitrogen from urea and ammonium sulphate in salt-affected soils. Plant Soil 45:247–255

    Article  CAS  Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calcirothird soil. Plant Soil 178:255–263

    Article  CAS  Google Scholar 

  • Garcia C, Hernandez T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–1191

    Article  CAS  Google Scholar 

  • Garg VK (1999) Leguminous trees for the rehabilitation of sodic wasteland in Northern India. Restor Ecol 7:281–287

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das K, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status and yield. Agron J 102:623–633

    Article  CAS  Google Scholar 

  • Ghafoor A, Gill M, Hassan A, Murtaza G, Qadir M (2001) Gypsum: an economical amendment for amelioration of saline-sodic waters and soils and for improving crop yields. Int J Agr Biol 3:266–275

    Google Scholar 

  • Ghaly FM (2002) Role of natural vegetation in improving salt-affected soil in northern Egypt. Soil Till Res 64:173–178

    Article  Google Scholar 

  • Gharaibeh M, Eltaif N, Shunnar OF (2009) Leaching and reclamation of calcareous saline-sodic soil by moderately saline and moderate-SAR water using gypsum and calcium chloride. J Plant Nutr Soil Sci 172:713–719

    Article  CAS  Google Scholar 

  • Gharaibeh M, Eltaif N, Shra’ah S (2010) Reclamation of a calcareous saline sodic soil using phosphoric acid and by product gypsum. Soil Use Manage 26:141–148

    Article  Google Scholar 

  • Gharaibeh M, Eltaif N, Albalasmeh A (2011) Reclamation of highly calcareous saline sodic soil using Atriplex Halimus and by-product gypsum. Int J Phytoremediation 13:873–883

    Article  CAS  Google Scholar 

  • Ghasemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management, and case studies. NSW University Press, Sydney

    Google Scholar 

  • Goerge C, Wagner M, Kucke M, Rilling MC (2012) Divergent consequences of hydrochar in the plant-soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl Soil Ecol 59:68–72

    Article  Google Scholar 

  • Gollarata M, Raiesi F (2007) The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran. Soil Biol Biochem 39:1699–1702

    Article  CAS  Google Scholar 

  • Grattan SR, Oster JD (2003) Use and reuse of saline-sodic waters for irrigation of crops. J Crop Prod 7:131–162

    Article  Google Scholar 

  • Grattan S, Benes S, Peters D, Diaz F (2008) Feasibility of irrigation Pickleweed (Torr) with hyper-saline drainage water. J Environ Qual 37:149–156

    Article  CAS  Google Scholar 

  • Gupta RK, Abrol I (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–288

    Article  Google Scholar 

  • Hammera E, Forstreutera M, Rilliga MC, Kohlera J (2015) Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 96:114–121

    Article  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfi sol and an Andisol. Geoderma 209–210:188–197

    Article  CAS  Google Scholar 

  • Hosseini Bai S, Xu CY, Xu Z, Blumfield TJ, Zhao H, Wallace H, Reverchon F, Van Zwieten L (2015) Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ Sci Pollut Res 22:3803–3809

    Article  CAS  Google Scholar 

  • Ilyas M, Qureshi RH, Qadir MA (1997) Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol 10:247–260

    Article  Google Scholar 

  • Izaurralde RC, Rosenberg NJ, Lal R (2001) Mitigation of climate change by soil carbon sequestration: issues of science, monitoring and degraded lands. Adv Agron 70:1–75

    Article  Google Scholar 

  • Jenkinson DJ, Raynor JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123:298–305

    Article  CAS  Google Scholar 

  • Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 110:225–233

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, Deluca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Jury WA, Jarrell WM, Devitt D (1979) Reclamation of saline-sodic soils by leaching. Soil Sci Soc Am J 43:1100–1106

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity- Results from a short-term pilot field study. Agr Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kelly W (1937) The reclamation of alkali soils. California Agric Exp Station Bull 617:1–40

    Google Scholar 

  • Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem 25:317–326

    Article  CAS  Google Scholar 

  • Kolb SE, Fermanich KJ, Dornbush ME (2009) Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci Soc Am J 73:1173–1181

    Article  CAS  Google Scholar 

  • Kookana R, Sarmah A, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended C consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236

    Article  CAS  Google Scholar 

  • Kwapinski W, Byrne CM, Kryachko E, Wolfram P, Adley C, Leahy J, Hayes M (2010) Biochar from biomass and waste. Waste Biomass Valorization 1:177–189

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37

    Article  CAS  Google Scholar 

  • Lal R (2001) Fate of eroded soil organic carbon: emission or sequestration. In Lal R (ed) Soil carbon sequestration and greenhouse effect. Soil Sci Soc Am J, USA, pp 173–182

  • Lal R, Follett RF, Kimble JM (2003) Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci 168:827–845

    Article  CAS  Google Scholar 

  • Lal R, Kimble J, Follett RF, Cole CV (2006) Enhancing crop yields through restoration of soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–206

    Article  Google Scholar 

  • Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Yu X (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crop Res 144:113–118

    Article  Google Scholar 

  • Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G (2014) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agr 95:1321–1327

    Article  CAS  Google Scholar 

  • Laura RD (1973) Effects of sodium carbonate on carbon and nitrogen mineralization of organic matter added to soil. Geoderma 9:15–26

    Article  Google Scholar 

  • Lebron I, Suarez DL, Yoshida T (2002) Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Sci Soc Am J 66:92–98

    Article  CAS  Google Scholar 

  • Lehman J, Joseph S (2009) Biochar for environmental management. Science and Technology. Earth Scan, pp 1–12

  • Lehman J, Rilling MC, Thies JE, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems – a review. Mitig Adapt Strategies Glob Chang 11:395–419

    Article  Google Scholar 

  • Lehmann J, Skjemstad JO, Sohi S, Carter J, Barson M, Fallon P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Letey J, Hoffman GJ, Hopmans JW, Grattan Suarez D, Corwin DL, Amrhein C (2011) Evaluation of soil salinity leaching requirement guidelines. Agr Water Manage 98:502–506

    Article  Google Scholar 

  • Levine AD, Asano T (2004) Peer reviewed: recovering sustainable water from wastewater. Environ Sci Technol 38:201–208

    Article  Google Scholar 

  • Liang YC, Yang YF, Yang CG, Shen QQ, Zhou JM, Yang LZ (2003) Soil enzymatic activity and growth of rice and barley as influenced by organic matter in an anthropogenic soil. Geoderma 115:149–160

    Article  CAS  Google Scholar 

  • Liang Y, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizao FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Liu XH, Han PF, Zhang XC (2012) Effect of biochar on soil aggregates in the Loess Plateau: results from incubation experiments. Int J Agr Biol 14:975–979

    Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Macdonald L, Farrell M, van Zwieten L, Krull E (2014) Plant growth responses to biochar addition: an Australian soils perspective. Biol Fertil Soil 50:1035–1045

    Article  CAS  Google Scholar 

  • Mace J, Amrhein C (2001) Leaching and reclamation of a soil irrigated with moderate SAR waters. Soil Sci Soc Am J 65:199

    Article  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mandal UK, Bhardwaj AK, Warrington DN, Goldstein D, Bar Tal A, Levy GJ (2008) Changes in soil hydraulic conductivity, runoff and soil loss due to irrigation with different types of saline-sodic water. Geoderma 144:509–516

    Article  Google Scholar 

  • Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. Paper presented at the International salinity forum, Riverside

    Google Scholar 

  • McCarty GW, Ritchie JC (2002) Impact of soil movement on carbon sequestration in agricultural ecosystems. Environ Pollut 116:423–430

    Article  CAS  Google Scholar 

  • McClung G, Frankenberger WT (1985) Soil nitrogen transformation as affected by salinity. Soil Sci 139:405–411

    Article  CAS  Google Scholar 

  • McCormic RW, Wolf DC (1980) Effect of sodium chloride on CO2 evolution, ammonification and nitrification in a sassafras sandy loam. Soil Biol Biochem 12:153–157

    Article  Google Scholar 

  • McNeal BL, Layfield DA, Norvell WA, Rhoades JD (1968) Factors influencing hydraulic conductivity of soils in the presence of mixed -salt solutions. Soil Sci Soc Am J 32:187–190

    Article  CAS  Google Scholar 

  • Metternicht G, Zink J (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Mishra A, Sharma SD (2003) Leguminous trees for the restoration of degraded sodic wasteland in Eastern Uttar Pradesh, India. Land Degrad Dev 14:245–261

    Article  Google Scholar 

  • Moore DC, Singer MJ (1990) Crust formation effects on soil erosion processes. Soil Sci Soc Am J 54:1117–1123

    Article  Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agron J 3:313–339

    Article  Google Scholar 

  • Muneer M, Oades JM (1989a) The role of Ca-organic interactions in soil aggregate stability. II. Field studies with 14C-labelled straw, CaCO3 and CaSO4.2H2O. Aust J Soil Res 27:401–409

    Article  CAS  Google Scholar 

  • Muneer M, Oades JM (1989b) The role of Ca-organic interactions in soil aggregates stability I. Laboratory studies with 14C-glucose, CaCO3 and CaSO4.2H2O. Aust J Soil Res 27:389–399

    Article  CAS  Google Scholar 

  • Murphy DV, Sparling GP, Fillery IRP (1998) Stratification of microbial biomass C and N and gross N mineralization with soil depth in two contrasting Western Australian agricultural soils. Aust J Soil Res 36:45–55

    Article  Google Scholar 

  • Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in Australian sodic soils. Aust J Soil Res 31:801–819

    Article  CAS  Google Scholar 

  • Nelson PN, Oades JM (1998) Organic matter, sodicity and soil structure. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management and environmental consequences. Oxford University Press, New York

    Google Scholar 

  • Nelson PN, Ladd JN, Oades JM (1996) Decomposition of 14C-Labelled plant material in a salt-affected soil. Soil Biol Biochem 24:433–441

    Article  Google Scholar 

  • Nelson PN, Barzegar AR, Oades JM (1997) Sodicity and clay type: influence on decomposition of added organic matter. Soil Sci Soc Am J 61:1052–1057

    Article  CAS  Google Scholar 

  • Nelson PN, Baldock JA, Oades JM (1998) Changes in dispersible clay content, organic carbon content and electrolyte composition following incubation of sodic soil. Soil Res 36:883–898

    Article  Google Scholar 

  • Niazi B, Ahmed M, Hussain N, Salim M (2001) Comparison of sand, gypsum and sulphuric acid to reclaim a dense saline sodic soil. Int J Agr Biol 3:316–318

    Google Scholar 

  • NLWRA (2001) National dryland salinity assessment. National land and water resources audit

  • Novak JM, Busscher WJ, Laird DA, AHmedna M, Watts DW, Niandou MA (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174:105–112

    Article  CAS  Google Scholar 

  • O’Connor GA, Elliott HA, Bastian RK (2008) Degraded water reuse: an overview. J Environ Qual 37:157–168

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  Google Scholar 

  • Oster JD (1994) Irrigation with poor quality water. Agr Water Manage 25:271–279

    Article  Google Scholar 

  • Oster JD, Shainberg I (2001) Soil responses to sodicity and salinity: challenges and opportunities. Soil Res 39:1219–1224

    Article  CAS  Google Scholar 

  • Oster JD, Shainberg I, Abrol I (1999) Reclamation of salt-affected soil. Agricultural Drainage. Agronomy Monograph 38:315–346

    Google Scholar 

  • Pal DK, Dasong GS, Vadivelu S, Ahuja RL, Bhattacharyya T (2000) Secondary calcium carbonate in soils of arid and semiarid regions on India. In: Lal R, Kimble JM, Eswran H, Stewart BA (eds) Global climate change and pedogenic. Lewis Publishers, Boca, Raton, pp 149–186

    Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fert Soil 33:204–217

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV (1987) Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30:695–702

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Pessarakli M, Szabolcs I (1999) Soil salinity and sodicity as particular plant-crop stress factors. Handbook of plant and crop stress. 2nd edition, revised and expanded. Marcel Dekker, Inc., New York, p 1254

    Google Scholar 

  • Piccolo A, Pietramellara G, Mbagwu JSC (1996) Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manage 12:209–213

    Article  Google Scholar 

  • Piccolo A, Pietramellara G, Mbagwu JSC (1997) Use of humic substances as soil conditioners to increase aggregate stability. Geoderma 75:267–277

    Article  CAS  Google Scholar 

  • Poloneko D, Mayfield C, Dumbroff E (1981) Microbial responses to salt-induced osmotic stress. Plant Soil 59:269–285

    Article  Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    Article  CAS  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1996) Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74:207–217

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1997) Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Land Res Manag 11:343–352

    CAS  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2001a) Use of saline–sodic waters through phytoremediation of calcareous saline–sodic soils. Agr Water Manage 50:197–210

    Article  Google Scholar 

  • Qadir M, Schubert S, Ghafoor A, Murtaza G (2001b) Amelioration strategies for sodic soils: a review. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Qadir M, Noble AD, Oster JD, Schubert S,  Ghafoor A (2005) Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: a review. Soil Use and Management 21: 173–180

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline‐sodic soils. In Donald LS (ed). Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Quirk J (1994) Interparticle forces: a basis for the interpretation of soil physical behavior. Advances in Agronomy, Academic Press, Orlando, pp 121–183

    Google Scholar 

  • Quirk J (2001) The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure. Aust J Soil Res 39:1185–1218

    Article  CAS  Google Scholar 

  • Quirk J, Schofield RK (1955) The effect of electrolyte concentration on soil permeability. Eur J Soil Sci 6:163–178

    Article  CAS  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agr 42:351–362

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Rengasamy P, Olsson KA (1991) Sodicity and soil structure. Aust J Soil Res 29:935–952

    Article  CAS  Google Scholar 

  • Rengasamy P, Sumner ME (1998) Processes involved in sodic behaviour. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management and environmental consequences. Oxford University Press, New York, pp 35–50

    Google Scholar 

  • Reverchon F, Flicker RC, Yang H, Yan G, Xu Z, Chen C, Bai SH, Zhang D (2014) Changes in δ15N in a soil–plant system under different biochar feedstocks and application rates. Biol Fertil Soils 50:275–283

    Article  CAS  Google Scholar 

  • Reverchon F, Yang H, Ho TY, Yan G, Wang J, Xu Z, Chen C, Zhang D (2015) A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation. Env Sci Pollut Res 22:2138–2144

    Article  CAS  Google Scholar 

  • Rhoades JD (1987) Use of saline water for irrigation. Water Quality Bull 12:14–20

    CAS  Google Scholar 

  • Richard LA (1954) Diagnosis and improvement of saline and alkali soils. Soil Sci 78:154

    Article  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Robbins C (1986) Sodic calcareous soil reclamation as affected by different amendments and crops. Agron J 78:916–920

    Article  CAS  Google Scholar 

  • Rondon M, Lehman J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Sadinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performances in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Sadiq M, Hassan G, Mehdi S, Hussain N, Jamil M (2007) Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 17:182–190

    Article  CAS  Google Scholar 

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Townsend AR (1994) Climatic, edaphic and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cy 8:279–293

    Article  CAS  Google Scholar 

  • Schnurer JM, Clarholm M, Roswell T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Article  Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D, Verma V (2011) Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biol Biochem 43:667–674

    Article  CAS  Google Scholar 

  • Shainberg I, Lety J (1984) Response of soils to sodic and saline conditions. Hilgardia 52:1–57

    Article  Google Scholar 

  • Shainberg I, Levy G, Rengasamy P, Frenkel H (1992) Aggregate stability and seal formation as affected by drops’ impact energy and soil amendments. Soil Sci 154:113–119

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota and soil organic matter dynamics. Soil Till Res 79:7–31

    Article  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    Article  CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255

    Article  CAS  Google Scholar 

  • Slavich PG, Sinclair K, Morris SH, Kimber SWL, Downie A, Van Zwieten L (2013) Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366:213–227

    Article  CAS  Google Scholar 

  • Smedema L, Shiati K (2002) Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrig Drain 16:161–174

    Article  Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48:546–554

    Article  CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impact of woodchip biochar addition on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  Google Scholar 

  • Stevens DP, McLaughlin MJ, Smart MK (2003) Effects of long term irrigation with reclaimed water on soils of the Northern Adelaide Plains, South Australia. Soil Res 41:933–948

    Article  Google Scholar 

  • Suarez D, Wood J, Lesch S (2006) Effect of SAR on water infiltration under a sequential rain-irrigation management system. Agr Water Manage 86:150–164

    Article  Google Scholar 

  • Sumner M (1993) Sodic soils—new perspectives. Soil Res 31:683–750

    Article  Google Scholar 

  • Sumner ME, Miller WP, Kookana RS, Hazelton P (1998) Sodicity, dispersion and environmental consequences. In: Sumner ME, Naidu R (eds) Sodic soils: distribution, properties, management and environmental consequences. Department of Crop and Soil Sciences, University of Georgia, Athens

    Google Scholar 

  • Szabolcs I (1994) Soils and salinization. Hand book of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tanton TW, Armstrong ASB, Rycroft DW (1988) The leaching of salts from restructured saline clay soils. Soil Use Manage 4:139–143

    Article  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

  • Thies JE, Rilling MC (2009) Characteristics of biochar: biological properties. Biochar Environ Management: Sci Technol, pp 85–105

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effect s of salt additions on two herbaceous plant species. J Environ Manage 129:62–68

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. Eur J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Toze S (2006) Reuse of effluent water-benefits and risks. Agr Water Manage 80:147–159

    Article  Google Scholar 

  • Tripathi S, Kumari S, Chakraborti A, Gupta A, Chakrabarti K, Bandyapadhyay BK (2006) Microbial biomass and its activities in salt-affected coastal soils. Biol Fert Soil 42:273–277

    Article  Google Scholar 

  • Tripathi S, Chakraborti A, Chakrabarti K, Bandyapadhyay BK (2007) Enzyme activities and microbial biomass in coastal soils of India. Soil Biol Biochem 39:2840–2848

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510

    Article  CAS  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effects of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage 27:205–212

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Cowie A (2010a) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Downie A, Morris S, Rust J, Chan KY (2010b) A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Aust J Soil Res 48:569–576

    Article  CAS  Google Scholar 

  • Vance WH, Tisdall JM, McKenzie BM (1998) Residual effects of surface application of organic matter and calcium salts on the sub-soil of a red-brown earth. Aust J Exp Agr 38:595–600

    Article  Google Scholar 

  • Vance GF, King LA, Ganjegunte GK (2008) Soil and plant responses from land application of saline-sodic waters: implications of management. J Environ Qual 37:139–148

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos A, Van Der Velde M, Diafas I (2010) Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. Joint Research Centre, Institute for Environment and Sustainability, Ispra

    Google Scholar 

  • Walker DJ, Bernal PM (2008) The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour Technol 99:396–403

    Article  CAS  Google Scholar 

  • Walpola BC, Arunakumara KKIU (2010) Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. J Agr Sci 5:9–18

    Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  CAS  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fert Soil 44:943–953

    Article  Google Scholar 

  • Wong VNL, Dalal RC, Greene RSB (2009) Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. Appl Soil Ecol 41:29–40

    Article  Google Scholar 

  • Wong VNL, Greene RSB, DALAL RC, Murphy BW (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manage 26:2–11

    Article  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehman J, Joseph S (2010) Sustainable biochar on mitigate global climate change. Nat Commun 1:56

    Article  CAS  Google Scholar 

  • Wu L, Chen W, French C, Chang AC (2009) Safe application of reclaimed water reuse in the southwestern United States. ANR Publications, pp 1–21

  • Xu CY, Hosseini-Bai S, Hao Y, Rachaputi RCN, Wang H, Xu Z, Wallace H (2015) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Yan N, Marschner P (2013) Microbial activity and biomass recover rapidly after leaching of saline soils. Biol Fert Soil 49:367–371

    Article  CAS  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt-affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Article  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fert Soil 25:211–223

    Article  CAS  Google Scholar 

  • Zavalloni C, Alberti G, Biasiol S, Vedove GD, Fornasier F, Liu J, Peressotti A (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51

    Article  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20:8472–8483

    Article  CAS  Google Scholar 

  • Zhang QZ, Dijkstra FA, Liu XR, Wang YD, Huang J, Lu N (2014) Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS One 9:1–8

    Google Scholar 

  • Zhang QZ, Du ZL, Lou Y, He X (2015) A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions. Catena 127:26–31

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Amini.

Additional information

Responsible editor: Yong Sik Ok

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Ghadiri, H., Chen, C. et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soils Sediments 16, 939–953 (2016). https://doi.org/10.1007/s11368-015-1293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1293-1

Keywords

Navigation