Skip to main content

Advertisement

Log in

Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cyhalofop-butyl is an aryloxyphenoxypropionate post-emergence herbicide widely used around the world in agriculture. The acute toxicity of cyhalofop-butyl to embryos, larvae (12 and 72 h post-hatching), and adult zebrafish, as well as the short-term developmental toxicity of cyhalofop-butyl to embryo and sac-fry stages, was tested. The results showed that the 96-h LC50 values of cyhalofop-butyl to embryos, 12 h post-hatching larvae, 72 h post-hatching larvae, and adult fish were 2.03, 0.58, 1.42, and 3.49 mg/L, respectively, suggesting zebrafish early life stages were more sensitive to cyhalofop-butyl than adult stage. Cyhalofop-butyl would inhibit the spontaneous movement, heartbeat, hatching rate of embryos, and the body length of surviving larvae of zebrafish at 1.00 mg/L or higher concentrations. Morphological abnormalities, including pericardial edema, yolk sac edema, deformation of tail, and deformation of spine, were induced by cyhalofop-butyl. The results indicated that cyhalofop-butyl had significant negative impacts on zebrafish at different life stages, and spontaneous movement and hatching rate were sensitive endpoints for assessing short-term developmental toxicity of cyhalofop-butyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

APP:

aryloxyphenoxypropionate

DAD:

diode array detector

FET:

Fish Embryo Toxicity

hpf:

h post-fertilization

GR:

growth retardation

GST:

glutathione-S-transferases

HPLC:

high performance liquid chromatography

IUPAC:

International Union of Pure and Applied Chemistry

LOEC:

the lowest observed effect concentration

NOEC:

the no observed effect concentration

OECD:

Organization for Economic Co-operation and Development

PE:

pericardial edema

SD:

spine deformation

TD:

tail deformation

UV:

ultraviolet

YSE:

yolk sac edema

References

  • Bleau H, Daniel C, Chevalier G, vanTra H, Hontela A (1996) Effects of acute exposure to mercury chloride and methylmercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34(3):221–235

    Article  CAS  Google Scholar 

  • Chen Y, Huang Y, Wen C, Wang Y, Chen W, Chen L, Tsay HJ (2008) Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicol Teratol 30(5):440–447

    Article  CAS  Google Scholar 

  • Dang Z, Li K, Yin H, Hakkert B, Vermeire T (2011) Endpoint sensitivity in fish endocrine disruption assays: regulatory implications. Toxicol Lett 202(1):36–46

    Article  CAS  Google Scholar 

  • De Gaspar I, Blanquez MJ, Fraile B, Paniagua R, Arenas MI (1999) The hatching gland cells of trout embryos: characterisation of N- and O-linked oligosaccharides. J Anat 194:109–118

    Article  Google Scholar 

  • Domingues I, Oliveira R, Lourenço J, Grisolia CK, Mendo S, Soares AMVM (2010) Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. Comp Biochem Physiol C Toxicol Pharmacol 152(3):338–345

    Article  Google Scholar 

  • Ducharme NA, Reif DM, Gustafsson JA, Bondesson M (2015) Comparison of toxicity values across zebrafish early life stages and mammalian studies: implications for chemical testing. Reprod Toxicol 55:3–10

  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97(2):79–87

    Article  CAS  Google Scholar 

  • Fako VE, Furgeson DY (2009) Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev 61(6):478–486

    Article  CAS  Google Scholar 

  • Fent K (2003) Ecotoxicological problems associated with contaminated sites. Toxicol Lett 140:353–365

    Article  Google Scholar 

  • Fent K, Meier W (1992) Tributyltin-induced effects on early life stages of minnows Phoxinus phoxinus. Arch Environ Contam Toxicol 22(4):428–438

    Article  CAS  Google Scholar 

  • Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals. Ecotoxicol Environ Saf 63(2):253–267

    Article  CAS  Google Scholar 

  • Guo Z, Huang F, Xu Z (2008) Residue dynamics of 10% fenoxaprop-p-ethyl cyhalofop-butyl EC in rice. J Ecol Rural Environ 24:51–54 (in Chinese)

    CAS  Google Scholar 

  • Huang F, Guo ZY, Xu Z, Yang RB (2006) Toxicity of cyhalofop-butyl and fenoxaprop-ethyl to tadpole. J 327 Agro-Environ Sci 26(3):1063–1066 (in Chinese)

    Google Scholar 

  • ISO (1996) Water quality-determination of the acute lethal toxicity of substances to a freshwater fiss [Brachydanio rerio Hamiltone-Buchanan (Teleostei, Cyprinidae)]. In: Part 3: Flow-through Method

    Google Scholar 

  • Ito M, Kawahara H, Asai M (1998) Selectivity of cyhalofop-butyl in Poaceae species. J Weed Sci Technol 43(2):122–128

    Article  CAS  Google Scholar 

  • Jin M, Zhang X, Wang L, Huang C, Zhang Y, Zhao M (2009a) Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol 95(4):347–354

    Article  CAS  Google Scholar 

  • Jin Y, Chen R, Sun L, Qian H, Liu W, Fu Z (2009b) Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 150(3):414–420

    Article  Google Scholar 

  • Kimmel CB, Patterson J, Kimmel RO (1974) The development and behavioral characteristics of the startle response in the zebrafish. Dev Psychobiol 7:47–60

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310

    Article  CAS  Google Scholar 

  • Kumar B, Sharma R, Singh S (2012) Evaluation of harvest residues of cyhalofop-butyl in paddy soil. Bull Environ Contam Toxicol 89(2):344–347

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009a) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 149(2):196–209

    Article  CAS  Google Scholar 

  • Lammer E, Kamp HG, Hisgen V, Koch M, Reinhard D, Salinas ER, Wendler K, Zok S, Braunbeck T (2009b) Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicol In Vitro 23(7):1436–1442

    Article  CAS  Google Scholar 

  • Manjunatha B, Peng W, Liu K, Marigoudar SR, Chen X, Wang X, Wang X (2014) The effects of henna (hair dye) on the embryonic development of zebrafish (Danio rerio). Environ Sci Pollut Res Int 21(17):10361–10367

    Article  CAS  Google Scholar 

  • Mu X, Pang S, Sun X, Gao J, Chen J, Chen X, Li X, Wang C (2013) Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environ Pollut 175:147–157

    Article  CAS  Google Scholar 

  • Nagel R (2002) DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19:38–48

    Google Scholar 

  • Newman MC, Unger MA (2002) Fundamentals of ecotoxicology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Nguyen TD, Han EM, Seo MS, Kim SR, Yun MY, Lee DM, Lee GH (2008) A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry. Anal Chim Acta 619(1):67–74

    Article  CAS  Google Scholar 

  • Niell S, Pareja L, Geis Asteggiante L, Cesio MV, Heinzen H (2010) Comparison of extraction solvents and conditions for herbicide residues in milled rice with liquid chromatography-diode array detection analysis (LC-DAD). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27(2):206–211

    Article  CAS  Google Scholar 

  • OECD 203 (1992) OECD guidelines for the testing of chemicals. In: Section 2: effects on biotic systems test no. 203: fish, acute toxicity (FET) test. Organization for Economic Cooperation and Development, Paris

    Chapter  Google Scholar 

  • OECD 212 (1998) OECD guidelines for the testing of chemicals. In: Section 2: effects on biotic systems test no. 212: fish, short-term toxicity test on embryo and sac-fry stage. Organization for Economic Cooperation and Development, Paris

    Chapter  Google Scholar 

  • OECD 236 (2013) OECD guidelines for the testing of chemicals. In: Section 2: effects on biotic systems test no. 236: fish embryo acute toxicity (FET) test. Organization for Economic Cooperation and Development, Paris

    Chapter  Google Scholar 

  • Oliveira R, Domingues I, Koppe Grisolia C, Soares AM (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ Sci Pollut Res Int 16(6):679–688

    Article  CAS  Google Scholar 

  • Ottis BV, Mattice JD, Talbert RE (2005) Determination of antagonism between cyhalofop-butyl and other rice (Oryza sativa) herbicides in barnyard grass (Echinochloa crusgalli). J Agric Food Chem 53:4064–4068

    Article  CAS  Google Scholar 

  • Pareja L, Fernández-Alba AR, Cesio V, Heinzen H (2011) Analytical methods for pesticide residues in rice. TrAC Trends Anal Chem 30(2):270–291

    Article  CAS  Google Scholar 

  • Perrichon P, Le Bihanic F, Bustamante P, Le Menach K, Budzinski H, Cachot J, Cousin X (2014) Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ Sci Pollut Res 21(24):13703–13719

    Article  CAS  Google Scholar 

  • Phong TK, Yoshino K, Hiramatsu K, Harada M, Inoue T (2010) Pesticide discharge and water management in a paddy catchment in Japan. Paddy Water Environ 8(4):361–369

    Article  Google Scholar 

  • Qin L, Liu F, Liu H, Wei Z, Sun P, Wang Z (2014) Evaluation of HODE-15, FDE-15, CDE-15, and BDE-15 toxicity on adult and embryonic zebrafish (Danio rerio). Environ Sci Pollut Res Int 21(24):14047–14057

    Article  CAS  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H et al (2012) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33(2):128–132

    Article  Google Scholar 

  • Wang SF, Liu KC, Wang XM, He QX, Chen XQ (2011) Toxic effects of celastrol on embryonic development of zebrafish (Danio rerio). Drug Chem Toxicol 34(1):61–65

    Article  Google Scholar 

  • Wu C, Zhao X, Wu S, Cheng L, Wang Y, Chang T, Yu R, Ping L (2011) Toxicity and risk of herbicide cyhalofop-butyl on Rana limnocharis. Acta Agriculturae Zhejiangensis 23(4):771–775

    Google Scholar 

  • Wu J, Wang K, Zhang Y, Zhang H (2014) Determination and study on dissipation and residue determination of cyhalofop-butyl and its metabolite using HPLC-MS/MS in a rice ecosystem. Environ Monit Assess 186(10):6959–6967

    Article  CAS  Google Scholar 

  • Xu C, Wang J, Liu W, Sheng GD, Tu Y, Ma Y (2008) Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambdacyhalothrin. Environ Toxicol Chem 27:174–181

    Article  CAS  Google Scholar 

  • Yan X, Ning B, Wang L (2007) The problems and development and application of cyhalofop-butyl. World Pestic 29(2):43–45 (in Chinese)

    CAS  Google Scholar 

  • Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28(2):245–253

    Article  CAS  Google Scholar 

  • Zhao L, Zhu G, Jiang Z (2002) Determination of cyhalofop-butyl and its metabolites in water, soil and rice straw by high performance liquid chromatography. Chin J Anal Chem 31(2):163–166

    Google Scholar 

  • Zhu G, Wu H, Walilino JKM, Li S (2002) Response of GSTase and liver esterase in goldfish (Carrasius auratus) and topmouth gudegon (Pseudorasbora parva) after sublethal exposure to cyhalofop-butyl and profurite-aminium. Chin J Pestic Sci 4(3):35–42

    CAS  Google Scholar 

  • Zhu L, Mu X, Wang K, Chai T, Yang Y, Qiu L, Wang C (2015) Cyhalofop-butyl has the potential to induce developmental toxicity, oxidative stress and apoptosis in early life stage of zebrafish (Danio rerio). Environ Pollut 203:40–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by National Twelfth Five-Year Plan for Science and Technology (Grant No. 2011BAE06B09) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Qiu.

Additional information

Responsible editor: Henner Hollert

Fangjie Cao and Xiaoshan Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F., Liu, X., Wang, C. et al. Acute and short-term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). Environ Sci Pollut Res 23, 10080–10089 (2016). https://doi.org/10.1007/s11356-016-6236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6236-x

Keywords

Navigation